Archives For future of higher education

Author Information: William Davis, California Northstate University, William.Davis@csnu.edu.

Davis, William. “Crisis. Reform. Repeat.” Social Epistemology Review and Reply Collective 7, no. 10 (2018): 37-44.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-422

Yale University, in the skyline of New Haven, Connecticut.
Image by Ali Eminov via Flickr / Creative Commons

 

If you have been involved in higher education in recent decades, you have noticed shifts in how courses are conceived and delivered, and what students, teachers, and administrators expect of each other. Also, water feels wet. The latter statement offers as much insight as the first. When authors argue the need for new academic models, indeed that a kind of crisis in United States higher education is occurring, faculty and administrators in higher education are forgiven if we give a yawning reply: not much insight there.

Another Crisis

Those with far more experience in academia than I will, likely, shake their heads and scoff: demands for shifts in educational models and practices seemingly occur every few years. Not long ago, I was part of the SERRC Collective Judgment Forum (2013) debating the notion that Massive Open Online Courses (MOOCs) are the future of higher education. The possibilities and challenges portended by online education would disrupt (“disruptive technologies” often represent the goals not the fears of the California culture where I live and work) the landscape of colleges and universities in the United States and the rest of the world.

Higher education would have to adapt to meet the needs of burgeoning numbers of people (at what point does one become a ‘student?’) seeking knowledge. The system of higher education faced a crisis; the thousands of people enrolling in MOOCs indicated that hordes of students might abandon traditional universities and embrace new styles of learning that matched the demands of twenty-first century life.

Can you count the number of professional crises you have lived through? If the humanities and/or social sciences are your home, then you likely remember quite a few (Kalin, 2017; Mandler, 2015; Tworek, 2013). That number, of course, represents calamity on a local level: crises that affect you, that loom over your future employment. For many academics, MOOCs felt like just such a threat.

Historian of technology Thomas Hughes (1994)[i] describes patterns in the development, change, and emergence of technologies as “technological momentum.” Technological momentum bridges two expansive and nuanced theories of technological development: determinism—the claim that technologies are the crucial drivers of culture—and constructivism—the idea that cultures drive technological change. MOOCs might motivate change in higher education, but the demands of relevant social groups (Pinch and Bijker 1984) would alter MOOCs, too.

Professors ought not fear their jobs would disappear or consolidate so precipitously that the profession itself would be transformed in a few years or decade: the mammoth system of higher education in the U.S. has its own inertia. Change would happen over time; teachers, students, and universities would adapt and exert counter-influences. Water feels wet.

MOOCs have not revolutionized models of higher education in the United States. Behind the eagerness for models of learning that will satisfy increasing numbers of people seeking higher education, of which MOOCs are one example, lies a growing concern about how higher education is organized, practiced, and evaluated. To understand the changes that higher education seems to require, we ought first to understand what it currently offers. Cathy Davidson (2017), as well as Michal Crow and William Dabars (2015), offer such histories of college and university systems in the United States. Their works demonstrate that a crisis in higher education does not approach; it has arrived.

Education in an Age of Flux

I teach at a new college in a university that opened its doors only a decade ago. One might expect that a new college offers boundless opportunity to address a crisis: create a program of study and methods of evaluating that program (including the students and faculty) that will meet the needs of the twenty-first century world. Situated as we are in northern California, and with faculty trained at Research 1 (R1) institutions, our college could draw from various models of traditional higher education like the University of California system or even private institutions (as we are) like Stanford.

These institutions set lofty standards, but do they represent the kinds of institutions that we ought to emulate? Research by Davidson (2017), Crow and Dabars would recommend we not follow the well-worn paths that established universities (those in existence for at least a few decades) in the United States have trodden. The authors seem to adopt the perspective that higher education functions like a system of technology (Hughes 1994); the momentum exerted by such systems has determining effects, but the possibility of directing the course of the systems exists nevertheless.

Michael Crow and William Dabars (2015) propose a design for reshaping U.S. universities that does not require the total abandonment of current models. The impetus for the needed transformation, they claim, is that the foundations of higher education in the U.S. have decayed; universities cannot meet the demands of the era.

The priorities that once drove research institutions have been assiduously copied, like so much assessment based on memorization and regurgitation that teachers of undergraduates might recognize, that their legibility and efficacy have faded. Crow and Dabars target elite, private institutions like Dartmouth and Harvard as exemplars of higher education that cannot, under their current alignment, meet the needs of twenty-first century students. Concerned as they are with egalitarianism, the authors note that public institutions of higher education born from the Morrill Acts of 1862 and 1890 fare no better at providing for the needs of the nation’s people (National Research Council 1995).

Crow and Dabars’s New American University model (2015, pp. 6-8) emphasizes access, discovery, inclusiveness, and functionality. Education ought to be available to all (access and inclusiveness) that seek knowledge and understanding of the world (discovery) in order to operate within, change, and/or improve it (functionality). The Morrill Acts, on a charitable reading, represent the United States of America’s assertion that the country and its people would mutually benefit from public education available to large swaths of the population.

Crow and Dabars, as well as Davidson (2017), base their interventions on an ostensibly similar claim: more people need better access to resources that will foster intellectual development and permit them to lead more productive lives. The nation benefits when individuals have stimulating engagement with ideas through competent instruction.  Individuals benefit because they may pursue their own goals that, in turn, will ideally benefit the nation.

Arizona State University epitomizes the New American University model. ASU enrolls over 70,000 students—many in online programs—and prides itself on the numbers of students it accepts rather than rejects (compare such a stance with Ivy League schools in the U.S.A.). Crow, President of ASU since 2002, has fostered an interdisciplinary approach to higher education at the university. Numerous institutes and centers (well over 50) have been created to focus student learning on issues/topics of present and future concern. For instance, the Decision Center for a Desert City asks students to imagine a future Phoenix, Arizona, with no, or incredibly limited, access to fresh water.

To engage with a topic that impacts manifold aspects of cities and citizens, solutions will require perspectives from work in disciplines ranging from engineering and the physical sciences to the social sciences and the humanities. The traditional colleges of, e.g., Engineering, Law, Arts and Sciences, etc., still exist at ASU. However, the institutes and centers appear as semi-autonomous empires with faculty from multiple disciplines, and often with interdisciplinary training themselves, leading students to investigate causes of and solutions to existing and emerging problems.

ASU aims to educate broad sections of the population, not just those with imposing standardized tests scores and impressive high school GPAs, to tackle obstacles facing our country and our world. Science and Technology Studies, an interdisciplinary program with scholars that Crow and Dabars frequently cite in their text, attracted my interest because its practitioners embrace ‘messy’ problems that require input from, just to name a few, historians, philosophers, political scientists, and sociologists. While a graduate student in STS, I struggled to explain my program of study to others without referencing existing disciplines like philosophy, history, etc. Though I studied in an interdisciplinary program, I still conceptualized education in disciplinary silos.

As ASU graduates more students, and attracts more interdisciplinary scholars as teachers, we ought to observe how their experiment in education impacts the issues and problems their centers and institutes investigate as well as the students themselves. If students learn from interdisciplinary educators, alongside other students that have not be trained exclusively in the theories and practices of, say, the physical sciences or humanities and social sciences, then they might not see difficult challenges like mental illness in the homeless population of major U.S. cities as concerns to be addressed mainly by psychology, pharmacology, and/or sociology.

Cathy Davidson’s The New Education offers specific illustrations of pedagogical practices that mesh well with Crow and Dabars’s message. Both texts urge universities to include larger numbers of students in research and design, particularly students that do not envision themselves in fields like engineering and the physical sciences. Elite, small universities like Duke, where Davidson previously taught, will struggle to scale up to educate the masses of students that seek higher education, even if they desired to do so.

Further, the kinds of students these institutions attract do not represent the majority of people seeking to further their education beyond the high school level. All colleges and universities need not admit every applicant to align with the models presented by Davidson, Crow and Dabars, but they must commit to interdisciplinary approaches. As a scholar with degrees in Science and Technology Studies, I am an eager acolyte: I buy into the interdisciplinary model of education, and I am part of a college that seeks to implement some version of that model.

Questioning the Wisdom of Tradition

We assume that our institutions have been optimally structured and inherently calibrated not only to facilitate the production and diffusion of knowledge but also to seek knowledge with purpose and link useful knowledge with action for the common good. (Crow and Dabars 2015, 179)

The institutions that Crow, Dabars, and Davidson critique as emblematic of traditional models of higher education have histories that range from decades to centuries. As faculty at a college of health sciences established the same year Crow and Dabars published their work, I am both excited by their proposals and frustrated by the attempts to implement them.

My college currently focuses on preparing students for careers in the health sciences, particularly medicine and pharmacy. Most of our faculty are early-career professionals; we come to the college with memories of how departments were organized at our previous institutions.

Because of my background in an interdisciplinary graduate program at Virginia Tech, and my interest in the program’s history (originally organized as the Center for the Study of Science in Society), I had the chance to interview professors that worked to develop the structures that would “facilitate the production and diffusion of knowledge” (Crow and Dabars 2015, 179). Like those early professors at Virginia Tech, our current faculty at California Northstate University College of Health Sciences come from distinct disciplines and have limited experience with the challenges of designing and implementing interdisciplinary coursework. We endeavor to foster collaboration across disciplines, but we learn as we go.

Crow and Dabars’s chapter “Designing Knowledge Enterprises” reminds one of what a new institution lacks: momentum. At meetings spread out over nearly a year, our faculty discussed and debated the nuances of a promotion and retention policy that acknowledges the contributions of all faculty while satisfying administrative demands that faculty titles, like assistant, associate, and full professor, reflect the practices of other institutions. What markers indicate that a scholar has achieved the level of, say, associate professor?

Originally trained in disciplines like biology, chemistry, physics, or English (coming from the interdisciplinary program of Science and Technology Studies, I am a bit of an outlier) our faculty have been disciplined to think in terms of our own areas of study. We have been trained to advance knowledge in increasingly particular specialties. The criteria to determine a faculty member’s level largely matches what other institutions have developed. Although the faculty endeavored to create a holistic rubric for faculty evaluation, we confronted an administration more familiar with analytic rubrics. How can a university committee compare the work done by professors of genetics and composition?[ii]

Without institutional memory to guide us, the policies and directives at my college of health sciences develop through collective deliberation on the needs of our students, staff, faculty, college, and community. We do not invent policy. We examine publicly available policies created at and for other institutions of higher learning to help guide our own decisions and proposals. Though we can glean much from elite private institutions, as described by Crow and Dabars, and from celebrated public institutions like the University of California or California State University systems that Davidson draws upon at times in her text, my colleagues know that we are not like those other institutions and systems of higher education.

Our college’s diminutive size (faculty, staff, and students) lends itself to agility: when a policy is flawed, we can quickly recognize a problem and adjust it (not to say we rectify it, but we move in the direction of doing so, e.g., a promotion policy with criteria appropriate for faculty, and administrators, from any department). If we identify student, staff, faculty, or administrator needs that have gone unaddressed, we modify or add policies.

The size of our college certainly limits what we can do: we lack the faculty and student numbers to engage in as many projects as we like. We do not have access to the financial reservoirs of large or long-standing institutions to purchase all the equipment one finds at a University of California campus, so we must be creative and make use of what materials we do possess or can purchase.

What our college lacks, somewhat counterintuitively, sets us up to carry forth with what Davidson (2017) describes in her chapter “The Future of Learning:”

The lecture is broken, so we must think of better ways to incorporate active learning into the classroom . . . . The traditional professional and apprentice models don’t teach students how to be experts, and so we must look to peer learning and peer mentoring, rich cocurricular experiences, and research to put the student, not the professor or the institution, at the center. (248-9)

Davidson does not contend that lecture has no place in a classroom. She champion flipped classrooms (Armbruster, Patel, Johnson, and Weiss 2009) and learning spaces that emphasize active student engagement (Elby 2001; Johnson and Johnson 1999) with ideas and concepts—e.g., forming and critiquing arguments (Kuhn 2010).

Claiming that universities “must prepare our students for their epic journey . . . . should give them agency . . . to push back [against the world] and not merely adapt to it” (Davidson 2017, 13) sounds simultaneously like fodder for a press-release and a call to action. It will likely strike educators, a particular audience of Davidson’s text, as obvious, but that should not detract from its intentions. Yes, students need to learn to adapt and be flexible—their chosen professions will almost certainly transform in the coming decades. College students ought to consider the kinds of lives they want to live and the people they want to be, not just the kinds of professions they wish to pursue.

Ought we demonstrate for students that the university symbolizes a locale to cultivate a perspective of “sympathy, empathy, sensitivity, and responsiveness” (Held 2011, p. 479)? Do we see ourselves in a symbiotic world (Margulis and Sagan) or an adversarial world of competition? Davidson, Crow, and Dabars propose a narrative of connectivity, not just of academic disciplines, but of everyday problems and concerns. Professors ought to continue advancing knowledge, even in particular disciplines, but we must not imagine that we do it alone (individually, in teams, in disciplines, or even in institutions).

After Sifting: What to Keep

Crow and Dabars emphasize the interplay between form and function as integral to developing a model for the New American University. We at California Northstate also scrutinize the structure of our colleges. Though our college of health sciences has a life and physical science department, and a department of humanities and social sciences, our full-time faculty number less than twenty. We are on college and university committees together; we are, daily, visible to each other.

With varying levels of success so far, we have developed integrated course-based undergraduate research experiences for our students. In the coming year, we aim to integrate projects in humanities and social sciences courses with those from the physical sciences. Most of our students want to be health practitioners, and we endeavor to demonstrate to them the usefulness of chemistry along with service learning. As we integrate our courses, research, and outreach projects, we aim to provide students with an understanding that the pieces (courses) that make up their education unify through our work and their own.

Team teaching a research methods course with professors of genetics and chemistry in the fall of 2017, I witnessed the rigor and the creativity required for life and physical science research. Students were often confused: the teachers approached the same topics from seemingly disparate perspectives. As my PhD advisor, James Collier, often recounted to me regarding his graduate education in Science and Technology Studies (STS), graduate students were often expected to be the sites of synthesis. Professors came from traditional departments like history, philosophy, and sociology; students in STS needed to absorb the styles and techniques of various disciplines to emerge as interdisciplinarians.

Our students in the research methods class that fall saw a biologist, a chemist, and an STS scholar and likely thought: I want to be none of those things. Why should I learn how to be a health practitioner from professors that do not identify as health practitioners themselves?

When faculty adapt to meet the needs of students pursuing higher education, we often develop the kinds of creole languages elaborated by Peter Galison (1997) to help our students see the connections between traditionally distinct areas of study. Our students, then, should be educated to speak in multiple registers depending on their audience, and we must model that for them. Hailing from disparate disciplines and attempting to teach in ways distinct from how we were taught (e.g., flipped classrooms) and from perspectives still maturing (interdisciplinarity), university faculty have much to learn.

Our institutions, too, need to adapt: traditional distinctions of teaching, scholarship, and service (the hallmarks of many university promotion policies) will demand adjustment if they are to serve as accurate markers of the work we perform. Students, as stakeholders in their own education, should observe faculty as we struggle to become what we wish to see from them. Davidson, Crow, and Dabars argue that current and future crises will not be resolved effectively by approaches that imagine problems as solely technical, social, economic, cultural, or political. For institutions of higher education to serve the needs of their people, nations, and environments (just some of the pieces that must be served), they must acclimate to a world of increasing connectivity. I know: water feels wet.

Contact details: William.Davis@csnu.edu

References

Armbruster, Peter, Maya Patel, Erika Johnson, and Martha Weiss. 2009. “Active Learning and Student-centered Pedagogy Improve Student Attitudes and Performance in Introductory Biology” Cell Biology Education—Life Sciences Education 8: 203-13.

Bijker, Wiebe. 1993. “Do Not Dispair: There Is Life after Constructivism.” Science, Technology and Human Values 18: 113-38.

Crow, Michael; and William Dabars. Designing the New University. Johns Hopkinds University Press, 2015.

Davidson, Cathy. The New Education: How to Revolutionize the University to Prepare Students for a World in Flux. Basic Books, 2017.

Davis, William, Martin Evenden, Gregory Sandstrom and Aliaksandr Puptsau. 2013. “Are MOOCs the Future of Higher Education? A Collective Judgment Forum.” Social Epistemology Review and Reply Collective 2 (7) 23-27.

Elby, Andrew. 2001. “Helping Physics Students Learn How to Learn.” American Journal of Physics (Physics Education Research Supplement) 69 (S1): S54-S64.

Galison, Peter. 1997. Image and Logic: A Material Culture of Microphysics. Chicago, IL: The University of Chicago Press.

Hughes, Thomas. 1994. “The Evolution of Large Technical Systems.” The Social Construction of Technological Systems: New Directions in the Sociology and History of Technology. Cambridge, MA: MIT Press.

Johnson, David, and Roger T. Johnson. 1999. “Making Cooperative Learning Work.” Theory into Practice 38 (2): 67-73.

Kalin, Mike. “The Crisis in the Humanities: A Self-Inflicted Wound?” Independent School, Winter 2017. https://www.nais.org/magazine/independent-school/winter-2017/the-crisis-in-the-humanities-a-self-inflicted-wou/

Kuhn, Deanna. 2010. “Teaching and Learning Science as Argument.” Science Education 94 (5): 810-24.

Mandler, Peter. “Rise of the Humanities.” Aeon Magazine, December 17, 2015. https://aeon.co/essays/the-humanities-are-booming-only-the-professors-can-t-see-it

National Research Council. Colleges of Agriculture at the Land Grant Universities: A Profile. Washington, D.C.: National Academy Press, 1995.

Pinch, Trevor and Wiebe Bijker. 1984. “The Social Construction of Facts and Artifacts: Or How the Sociology of Science and the Sociology of Technology Might Benefit Each Other.” Social Studies of Science 14: 399-441.

Smith, Merritt, and Leo Marx. 1994. Does Technology Drive History? The Dilemma of Technological Determinism

Tworek, Heidi. “The Real Reason the Humanities Are ‘in Crisis.’” The Atlantic, December 18, 2013. https://www.theatlantic.com/education/archive/2013/12/the-real-reason-the-humanities-are-in-crisis/282441/

[i] My descriptions here of technological determinism and social constructivism lack nuance. For specifics regarding determinism, see the 1994 anthology from Leo Marx and Merritt Smith, Does Technology Drive History. For richer explanations of constructivism, see Bijker (1993), “Do not despair: There is life after constructivism,” and Pinch and Bijker (1984) “The social construction of facts and artifacts: Or how the sociology of science and the sociology of technology might benefit each other.”

[ii] Hardly rhetorical, that last question is live on my campus. If you have suggestions, please write me.

Author Information: Val Dusek, University of New Hampshire, val.dusek@unh.edu.

Dusek, Val. “Antidotes to Provincialism.” Social Epistemology Review and Reply Collective 7, no. 5 (2018): 5-11.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3Wz

Please refer to:

Out on the streets of downtown Shanghai this March.
Image by keppt via Flickr / Creative Commons

 

Bryan Van Norden’s book rightly castigates the exclusion or minimizing of non-Western philosophy in mainstream US philosophy curricula. I was shocked by the willful ignorance and arrogance of those such as able philosopher of biology, Massimo Pigliucci, whom, before reading the quote about Eastern thought, I highly respected. Van Norden is on target throughout with his criticism of Western professional philosopher’s dismissive provincialism. I only worry that his polemic, though accurately describing the situation, will not at all convert the unconverted. Calling the western philosophers who exclude non-Western philosophy “Trumpian philosophers” is both accurate and funny, but unlikely to make them more sympathetic to multi-cultural philosophy.

A Difficult History

Westerners until the last third of the twentieth century denied that there was any significant traditional Chinese science. Part of this was based on racial prejudice, but part of it was that by the nineteenth century, after the Opium War and the foreign concessions were made, Chinese science had degenerated, and superstitious aspects of such things as geomancy and astrology, rather than the earlier discoveries of geography and astronomy dominated.  Prior to the late 1950s for professional Western historians of science, and, until decades later (or even never) the public, scoffed at the idea of sophisticated traditional Chinese science. Chinese insight into astronomy, biology, and other fields was rejected by most people, including respectable historians of science.

The British biochemical embryologist and Marxist Joseph Needham over the second half of the twentieth century in the volumes of Science and Civilization in China gradually revealed the riches of Chinese knowledge of nature. There, is of course the issue of whether traditional Chinese knowledge of nature, and that of other non-Western peoples, often with the exception of Middle Eastern science, can be should be called science. If science is defined as necessarily including controlled experiments and mathematical laws, then Chinese knowledge of nature cannot be called science. Needham himself accepted this definition of science and made the issue of why China never developed science central to his monumental history.

However, Needham discovered innumerable discoveries of the Chinese of phenomena denied in Western science for centuries. Chinese astronomers recorded phenomena such as new stars (Novae) appearing, stellar evolution (change of color of stars), and sunspots in astronomy, None of these were recorded by ancient and medieval Western astronomers. Famously, modern astronomers have made use of millennium old Chinese recordings of novae to trace past astronomical history.

In China, the compass was known and detailed magnetic declination maps were made centuries before the West even knew of the compass. Geobotanical prospecting, using the correlation of plants with minerals in the soil, the idea that mountains move like waves, and on and on. Since field biology, observational astronomy, and historical geology in modern Western science usually do not involve experiments, and many contemporary philosophers of biology deny that there are biological laws, the “experiment and mathematical laws” definition of science may be too narrow.

An example of the chauvinist rejection of Chinese science, and of Needham’s monumental work is that of a respected Princeton historian, Charles Coulston Gillispie. In his review of the first volumes of Needham he warned readers not to believe the contents because Needham was sympathetic to the Communists. Ironically, in the review, Gillispie tended to dismiss applied science and praised the purely theoretical science supposedly unique to the West, accusing Needham of “abject betrayal of the autonomy of science.”

Also ironically, or even comically, in the margin of Gillispie’s reply, doubling down on the denunciation of Communism and defense of pure, non-materialist science was an advertisement recruiting guided nuclear missile scientists for Lockheed! One hopes, but doubts, that Gillispie was embarrassed by his review, as he made similar comments in his Edge of Objectivity, also suggesting that the Arabs and the Chinese could not be trusted with nuclear weapons as “we” can, with our superior moral values.

The Heights of Chinese Philosophy

Even decades after Needham’s magisterial sequence of volumes had been appearing, Cromer in an anti-multicultural book claims not only that China had no science, but that the Chinese had no interest in or knowledge of the world beyond China (neglecting the vast trade on the Silk Road during the ancient and medieval periods, amazingly varied Chinese imports during the Tang Dynasty, the voyages of exploration of Zheng He, the Three Jeweled Eunuch (perhaps a contradiction in terms), and the most complete map of the world before the 1490s (from Korea, but probably from Chinese knowledge and available in China).

Hopefully there will be a process of recognition of non-Western philosophy by American analytic philosophers of the sort that began fifty years earlier for Chinese knowledge of nature among historians. So far this has hardly happened.

One possibility for the integration of Asian philosophy into mainstream philosophy curricula is the integration of non-Western philosophy into the standard history of philosophy courses. One easy possibility of integration is including non-Western philosophy in the standard Ancient Philosophy and Medieval Philosophy curriculum. While teaching Ancient as well as Chinese philosophy in the last two decades I have (perhaps too often) drawn parallels between and contrasts of Greek and Chinese philosophy. However, very few students take both courses. Until this coming year Eastern philosophy was offered yearly, but not as a required part of the history sequence, and few students were in both courses, I worried whether these in-class comparisons fell mostly on deaf ears.

I have thought about the possibility of courses on ancient, medieval, and early modern philosophy including non-Western philosophy of the period. There are a couple of introductory philosophy anthologies, such as Daniel Bonevac’s, apparently now out of print, that include much non-Western philosophy. (Ironically, Bonevac is literally a “Trumpian philosopher,” in the sense of having supported Donald Trump.) Robert C. Solomon included discussion of some Chinese philosophy in his survey but shows total ignorance of modern research on Daoism, doubting that Laozi was an older contemporary of Confucius but rather at least one or two centuries later. Some ways a course that covered both Greek and Chinese philosophy could make comparisons between the two are suggested below. Of course, the usual, casual, comparison of the two involves an invidious contrast perhaps less strong than that of Pigliucci.

A Genuinely Modest Proposal

My proposal involves not introductory surveys but histories of philosophy from the Presocratics to the German romantics and early twentieth century philosophers.

Parallels between the Warring States philosophers and the Pre-Socratics have been noted by among others Benjamin Schwartz in The World of Thought in Ancient China. The Pre-Socratics’ statements have numerous parallels to those of Chinese philosophers of the same period. Qi has some parallels to the air of Anaximenes, in particular in terms of condensation as the source of objects. The Dao of Laozi, as source of all things, yet being indefinable and ineffable has resemblances to the Apeiron of Anaximander.

Of course, many of the paradoxes (that an arrow does not move, the paradox of metrical extension, that a length can be divided indefinitely, that an assemblage of infinitely small points can add up to a finite length) are almost identical with those of Zeno. Of course, the emphasis on Being in Western philosophy from Parmenides through Aristotle to Aquinas and other medieval contrasts most strongly with the emphasis on non-being in Laozi and its presence with less emphasis in Zhuangzi. West’s Early Greek Philosophy and the Orient has many evocative suggestions of influences of the East on the Presocratics. There is extensive work on the parallels and contrasts of the ethics of Mencius and that of Aristotle. The concept and role of the concept Qi has strong similarities to the Stoic notion of pneuma, as described, for instance in Sambursky’s Physics of the Stoics.

A.C. Graham in Disputers of the Dao argues that as the formal logical approaches of the early Wittgenstein, Russell, and logical positivism in the first half of the twentieth century gave way to the later Wittgenstein, and French deconstruction developed, these parts of Western philosophy more closely approximated to the approaches of traditional Chinese philosophy.

Shigehisa Kuriyama has provocatively and insightfully written on the comparison of traditional Chinese medicine and Greek Hippocratic medicine on the body. There have been many articles speculating on the relation of Greek skepticism being influenced by Eastern thought via Alexander’s invasion of India. Diogenes Laertius’s claims that Pyrrho (of later Pyrrhonian skepticism) went to India with Alexander where was influenced by the gymnosophists (“naked sophists”) he met there. C. Beckwith has argued that Phyrronism is a product of Buddhism. Jay Garfield, though thinking the influence question is a red herring, has written extensively and insightfully on the logical isomorphisms between Greek and Tibetan skeptical theses.

Buddhist logic of contradiction can be compared with and at least partially explicated by some twentieth century logics that incorporate contradictions as not illogical. These include presupposition logic as Buddhist. (Though a former colleague told me three people who worked on this died horrible deaths, one by cancer, another by auto accident, so I should avoid studying this area). Other twentieth century symbolic logic systems that allow contradictions as not fatal are Nicholas Rescher’s and Robert Brandom’s paraconsistent logic on applied to Eastern philosophy by Graham Priest, dialethic logic. One can also compare Pai-chang’s Zen monastic rules to the simultaneously developed ones of St. Benedict.

Several, both Western and Asian philosophers, have compared Chan Buddhist mysticism with that of Wittgenstein. Reinhardt May in Heidegger’s Hidden Sources has investigated influences of Heidegger’s readings of Helmut Wilhelm’s translations of Yi Qing and Dao De Jing. Eric Nelson, in his fascinating recent book has traced not only the recently more well-known use made by Heidegger, but also extensive use by Martin Buber, Hans Dreisch, and a number of less famous German philosophers of the early twentieth century.

Perhaps more controversial is the comparison made between the European medieval scholastics’ fusion of Christian ethics with Aristotelian cosmology and the medieval Chinese, so-called neo-Confucian scholastic fusion of Confucian ethics and politics with Daoist cosmology. One can compare the concept of li in the “neo-Daoist of dark learning” Wang Bi and more extensively in the neo-Confucians, most notably Xuzi, as Leibniz had suggested. Beyond parallels there have been provocative arguments that Buddhist means of argument, via the so-called Silk Road in Central Asia, issued in part of European scholastic technique. Certainly, a topic in early modern philosophy is Leibniz’s praise of the Yijing as binary arithmetic, and his claims about the similarity of Xuzi’s metaphysics and his own Monadology, with brief note of Nicholas Malebranche’s less insightful dialogue between a Chinese and a Christian philosopher.

The skyline of Shanghai, today one of the world’s leading cities.
Image by Alex and David Berger via Flickr / Creative Commons.

 

In western political philosophy the appeals to the superiority of Chinese society to that of Europe, or at least the existence of a well ordered and moral society without the Biblical God, by figures such as Montesquieu, Voltaire, Quesnay, Leibniz, Christian Wolff, and others, both using “China as a Model for Europe” as Maverick’s book is entitled, or as a means of satirizing European supposed morals and justice. The Chinese legalists, who were doing behavioral political science and Malthusian population theory of history over two millennia before Western political theorists did so, could be noted in a course in social philosophy that includes behavior political science.

Leibniz’s praise of the Yi as well as his extensive claims of similarity of Xuzi’s Li and Chi to his own form, substance, and monads. Also, Leibniz’s efforts of support for the Jesuit attempt to incorporate Confucian ceremonies into Catholic mass, and the Rites Controversy, detailed by David Mungello and others, deserve coverage in Early Modern courses.

There is a fascinating work by the child psychologist Alison Gopnik on possible connections that may have been made by Hume during his most creative period at La Fleche, where Descartes had studied long before, with missionaries who were familiar with Asian thought, particularly one who had lived in Siam.

In German romantic philosophy we find relatively little sophisticated treatment of Chinese philosophy (Witness Goethe’s fragmentary treatment of China.) However, there was a great reception of Indian philosophy among the German romantics. Schlegel, Schelling, and others absorbed ideas from Hinduism, not to mention Schopenhauer’s use of Buddhism. (Sedlar gives an elementary survey). In late nineteenth century philosophy there is the growing sympathy of Ernst Mach for Buddhism, as well as Nietzsche’s disputed attitudes toward Asian philosophy. Interestingly, Nietzsche copiously annotated his copy of Mach’s Analysis of Sensations, and offered to dedicate his Genealogy of Morals to Mach.

In twentieth century philosophy there have been numerous works of varying quality noting similarities between Wittgenstein’s approach to metaphysical questions and Chan Buddhism. There also are a number or works comparing Alfred North Whitehead to Buddhism.

Despite the severe criticisms that have been made of some best-selling popular treatments of the topic, I think there are significant parallels between some of the interpretations of quantum mechanics and some traditional Asian philosophies. I once had a testy exchange in print with the physicist and writer Jeremy Bernstein on this topic. His Trumpian reply was “Yogic, Schmogic.” A few decades later he wrote appreciatively of the Dali Llama’s attempt to relate Buddhism to quantum philosophy.

An Open Future for Education in Philosophy

I realize that there is always the danger of superficial comparisons between very different systems of thought, but I believe that much of the work I mention is not guilty of this. I also, realize, as a non-specialist, I have mentioned mainly works of comparison from the sixties through the eighties, and many more fine-grained scholarly articles have been produced in the last two decades.

I look forward to the integration of non-western philosophy into the core of the standard history of philosophy sequence, not just by supplementing the two or four-year sequence of history of philosophy courses with non-Western philosophy courses, but by including non-Western philosophy in the content of the history of philosophy of each period.

Contact details: val.dusek@unh.edu

References

Baatz, Ursula, “Ernst Mach: The Scientist as Buddhist?” in Ernst Mach: A Deeper Look, ed. J. T. Blackmoore, Springer, 2012.

Beckwith, Christopher I., Greek Buddha: Pyrrho’s Encounter with Early Buddhism in Central Asia, Princeton, 2015.

Bernstein, Jeremy, Val Dusek, and Ed Gerrish, “A Cosmic Flow,” “The Reader Replies” with reply by Jeremy Bernstein, American Scholar, Autumn 1979, p. 572.

Bernstein, Jeremy, “Quantum Buddhists,” in Quantum Leaps, Harvard, 2009, pp. 27-52.

Bonevac, Daniel, and Stephen Phillips, eds. Introduction to World Philosophy: A Multicultural Reader, Oxford, 2009.

Cromer, Alan, Common Sense: The Heretical Nature of Science, Oxford, 1995.

Gillispie, Charles Coulston, “Prospects,” American Scientist 45 no. 2 (March, 1957), 169-176, and reply no. 4 (September 1957) 266A-272A.

Gillispie, Charles Coulston, The Edge of Objectivity, Princeton, 1959.

Gopnik, Allison, “Could David Hume Have Known about Buddhism?: Charles François Dolu, the Royal College of La Flèche, and the Global Jesuit Intellectual Network,” Hume Studies, vol. 35, nos. 1 & 2, 2009, pp. 5-28.

Graham, A. C. Disputers of the Dao, Open Court, 1979.

Hartshorne, Charles, et al, “Symposium on Mahayana Buddhism and Whitehead,” Philosophy East and West, vol. 25, no. 4, 1975, pp. 393-488.

Kuyiyama, Shigehisa, The Expressiveness of the Body and the Divergence of Greek and Chinese Medicine, Zone Books, 2002.

Leibniz, Gottfried Wilhelm, Writings on China, trans. Daniel J. Cook and Henry Rosemont, Jr. Open Court, 1994.

Malebranche, Dialogue between a Christian Philosopher and a Chinese Philosopher, American Universities Press, 1980.

Maverick, Lewis A., China, A Model for Europe, Paul Anderson, 1949.

Mungello, David E. The Great Encounter of China and the West 1500-1800, 3d edn., Rowman & Littlefield Publishers, 2009.

Needham, Joseph, Science and Civilization in China, Cambridge University Press, 1954 -.

Nelson, Eric S., Chinese and Buddhist Philosophy in Early Twentieth Century German Thought, Bloomsbury, 2017.

Priest, Graham, Beyond the Limits of Thought, Oxford, 2002.

Priest, Graham, One: Being an Investigation into the Unity of Reality and of its Parts, including the Singular Object which is Nothingness, Oxford, 2016.

Reinhardt May, Heidegger’s Hidden Sources: East Asian Influences on His Work, transl. Graham Parkes, Routledge, 1996.

Sambursky, Samuel, The Physics of the Stoics, Princeton University Press, 1959.

Schwartz, Benjamin I., The World of Thought in Ancient China, Harvard, 1989.

Sedlar, Jean, India in the Mind of Germany: Schelling, Schopenhauer, and Their Times, University Press of America, 1982.

Van Norden, Bryan, Preface by Jay L. Garfield, Taking Back Philosophy: A Multicultural Manifesto, Columbia University Press, 2017.

West, M. L., Early Greek Philosophy and the Orient, Oxford University Press, 1971.

Author information: Moti Mizrahi, Florida Institute of Technology, mmizrahi@fit.edu

Mizrahi, Moti. “More in Defense of Weak Scientism: Another Reply to Brown.” Social Epistemology Review and Reply Collective 7, no. 4 (2018): 7-25.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3W1

Please refer to:

Image by eltpics via Flickr / Creative Commons

 

In my (2017a), I defend a view I call Weak Scientism, which is the view that knowledge produced by scientific disciplines is better than knowledge produced by non-scientific disciplines.[1] Scientific knowledge can be said to be quantitatively better than non-scientific knowledge insofar as scientific disciplines produce more impactful knowledge–in the form of scholarly publications–than non-scientific disciplines (as measured by research output and research impact). Scientific knowledge can be said to be qualitatively better than non-scientific knowledge insofar as such knowledge is explanatorily, instrumentally, and predictively more successful than non-scientific knowledge.

Brown (2017a) raises several objections against my defense of Weak Scientism and I have replied to his objections (Mizrahi 2017b), thereby showing again that Weak Scientism is a defensible view. Since then, Brown (2017b) has reiterated his objections in another reply on SERRC. Almost unchanged from his previous attack on Weak Scientism (Brown 2017a), Brown’s (2017b) objections are the following:

  1. Weak Scientism is not strong enough to count as scientism.
  2. Advocates of Strong Scientism should not endorse Weak Scientism.
  3. Weak Scientism does not show that philosophy is useless.
  4. My defense of Weak Scientism appeals to controversial philosophical assumptions.
  5. My defense of Weak Scientism is a philosophical argument.
  6. There is nothing wrong with persuasive definitions of scientism.

In what follows, I will respond to these objections, thereby showing once more that Weak Scientism is a defensible view. Since I have been asked to keep this as short as possible, however, I will try to focus on what I take to be new in Brown’s (2017b) latest attack on Weak Scientism.

Is Weak Scientism Strong Enough to Count as Scientism?

Brown (2017b) argues for (1) on the grounds that, on Weak Scientism, “philosophical knowledge may be nearly as valuable as scientific knowledge.” Brown (2017b, 4) goes on to characterize a view he labels “Scientism2,” which he admits is the same view as Strong Scientism, and says that “there is a huge logical gap between Strong Scientism (Scientism2) and Weak Scientism.”

As was the case the first time Brown raised this objection, it is not clear how it is supposed to show that Weak Scientism is not “really” a (weaker) version of scientism (Mizrahi 2017b, 10-11). Of course there is a logical gap between Strong Scientism and Weak Scientism; that is why I distinguish between these two epistemological views. If I am right, Strong Scientism is too strong to be a defensible version of scientism, whereas Weak Scientism is a defensible (weaker) version of scientism (Mizrahi 2017a, 353-354).

Of course Weak Scientism “leaves open the possibility that there is philosophical knowledge” (Brown 2017b, 5). If I am right, such philosophical knowledge would be inferior to scientific knowledge both quantitatively (in terms of research output and research impact) and qualitatively (in terms of explanatory, instrumental, and predictive success) (Mizrahi 2017a, 358).

Brown (2017b, 5) does try to offer a reason “for thinking it strange that Weak Scientism counts as a species of scientism” in his latest attack on Weak Scientism, which does not appear in his previous attack. He invites us to imagine a theist who believes that “modern science is the greatest new intellectual achievement since the fifteenth century” (emphasis in original). Brown then claims that this theist would be an advocate of Weak Scientism because Brown (2017b, 6) takes “modern science is the greatest new intellectual achievement since the fifteenth century” to be “(roughly) equivalent to Weak Scientism.” For Brown (2017b, 6), however, “it seems odd, to say the least, that [this theist] should count as an advocate (even roughly) of scientism.”

Unfortunately, Brown’s appeal to intuition is rather difficult to evaluate because his hypothetical case is under-described.[2] First, the key phrase, namely, “modern science is the greatest new intellectual achievement since the fifteenth century,” is vague in more ways than one. I have no idea what “greatest” is supposed to mean here. Greatest in what respects? What are the other “intellectual achievements” relative to which science is said to be “the greatest”?

Also, what does “intellectual achievement” mean here? There are multiple accounts and literary traditions in history and philosophy of science, science studies, and the like on what counts as “intellectual achievements” or progress in science (Mizrahi 2013b). Without a clear understanding of what these key phrases mean here, it is difficult to tell how Brown’s intuition about this hypothetical case is supposed to be a reason to think that Weak Scientism is not “really” a (weaker) version of scientism.

Toward the end of his discussion of (1), Brown says something that suggests he actually has an issue with the word ‘scientism’. Brown (2017b, 6) writes, “perhaps Mizrahi should coin a new word for the position with respect to scientific knowledge and non-scientific forms of academic knowledge he wants to talk about” (emphasis in original). It should be clear, of course, that it does not matter what label I use for the view that “Of all the knowledge we have, scientific knowledge is the best knowledge” (Mizrahi 2017a, 354; emphasis in original). What matters is the content of the view, not the label.

Whether Brown likes the label or not, Weak Scientism is a (weaker) version of scientism because it is the view that scientific ways of knowing are superior (in certain relevant respects) to non-scientific ways of knowing, whereas Strong Scientism is the view that scientific ways of knowing are the only ways of knowing. As I have pointed out in my previous reply to Brown, whether scientific ways of knowing are superior to non-scientific ways of knowing is essentially what the scientism debate is all about (Mizrahi 2017b, 13).

Before I conclude this discussion of (1), I would like to point out that Brown seems to have misunderstood Weak Scientism. He (2017b, 3) claims that “Weak Scientism is a normative and not a descriptive claim.” This is a mistake. As a thesis (Peels 2017, 11), Weak Scientism is a descriptive claim about scientific knowledge in comparison to non-scientific knowledge. This should be clear provided that we keep in mind what it means to say that scientific knowledge is better than non-scientific knowledge. As I have argued in my (2017a), to say that scientific knowledge is quantitatively better than non-scientific knowledge is to say that there is a lot more scientific knowledge than non-scientific knowledge (as measured by research output) and that the impact of scientific knowledge is greater than that of non-scientific knowledge (as measured by research impact).

To say that scientific knowledge is qualitatively better than non-scientific knowledge is to say that scientific knowledge is explanatorily, instrumentally, and predictively more successful than non-scientific knowledge. All these claims about the superiority of scientific knowledge to non-scientific knowledge are descriptive, not normative, claims. That is to say, Weak Scientism is the view that, as a matter of fact, knowledge produced by scientific fields of study is quantitatively (in terms of research output and research impact) and qualitatively (in terms of explanatory, instrumental, and predictive success) better than knowledge produced by non-scientific fields of study.

Of course, Weak Scientism does have some normative implications. For instance, if scientific knowledge is indeed better than non-scientific knowledge, then, other things being equal, we should give more evidential weight to scientific knowledge than to non-scientific knowledge. For example, suppose that I am considering whether to vaccinate my child or not. On the one hand, I have scientific knowledge in the form of results from clinical trials according to which MMR vaccines are generally safe and effective.

On the other hand, I have knowledge in the form of stories about children who were vaccinated and then began to display symptoms of autism. If Weak Scientism is true, and I want to make a decision based on the best available information, then I should give more evidential weight to the scientific knowledge about MMR vaccines than to the anecdotal knowledge about MMR vaccines simply because the former is scientific (i.e., knowledge obtained by means of the methods of science, such as clinical trials) and the latter is not.

Should Advocates of Strong Scientism Endorse Weak Scientism?

Brown (2017b, 7) argues for (2) on the grounds that “once the advocate of Strong Scientism sees that an advocate of Weak Scientism admits the possibility that there is real knowledge other than what is produced by the natural sciences […] the advocate of Strong Scientism, at least given their philosophical presuppositions, will reject Weak Scientism out of hand.” It is not clear which “philosophical presuppositions” Brown is talking about here. Brown quotes Rosenberg (2011, 20), who claims that physics tells us what reality is like, presumably as an example of a proponent of Strong Scientism who would not endorse Weak Scientism. But it is not clear why Brown thinks that Rosenberg would “reject Weak Scientism out of hand” (Brown 2017d, 7).

Like other proponents of scientism, Rosenberg should endorse Weak Scientism because, unlike Strong Scientism, Weak Scientism is a defensible view. Insofar as we should endorse the view that has the most evidence in its favor, Weak Scientism has more going for it than Strong Scientism does. For to show that Strong Scientism is true, one would have to show that no field of study other than scientific ones can produce knowledge. Of course, that is not easy to show. To show that Weak Scientism is true, one only needs to show that the knowledge produced in scientific fields of study is better (in certain relevant respects) than the knowledge produced in non-scientific fields.

That is precisely what I show in my (2017a). I argue that the knowledge produced in scientific fields is quantitatively better than the knowledge produced in non-scientific fields because there is a lot more scientific knowledge than non-scientific knowledge (as measured by research output) and the former has a greater impact than the latter (as measured by research impact). I also argue that the knowledge produced in scientific fields is qualitatively better than knowledge produced in non-scientific fields because it is more explanatorily, instrumentally, and predictively successful.

Contrary to what Brown (2017b, 7) seems to think, I do not have to show “that there is real knowledge other than scientific knowledge.” To defend Weak Scientism, all I have to show is that scientific knowledge is better (in certain relevant respects) than non-scientific knowledge. If anyone must argue for the claim that there is real knowledge other than scientific knowledge, it is Brown, for he wants to defend the value or usefulness of non-scientific knowledge, specifically, philosophical knowledge.

It is important to emphasize the point about the ways in which scientific knowledge is quantitatively and qualitatively better than non-scientific knowledge because it looks like Brown has confused the two. For he thinks that I justify my quantitative analysis of scholarly publications in scientific and non-scientific fields by “citing the precedent of epistemologists who often treat all items of knowledge as qualitatively the same” (Brown 2017b, 22; emphasis added).

Here Brown fails to carefully distinguish between my claim that scientific knowledge is quantitatively better than non-scientific knowledge and my claim that scientific knowledge is qualitatively better than non-scientific knowledge. For the purposes of a quantitative study of knowledge, information and data scientists can do precisely what epistemologists do and “abstract from various circumstances (by employing variables)” (Brown 2017b, 22) in order to determine which knowledge is quantitatively better.

How Is Weak Scientism Relevant to the Claim that Philosophy Is Useless?

Brown (2017b, 7-8) argues for (3) on the grounds that “Weak Scientism itself implies nothing about the degree to which philosophical knowledge is valuable or useful other than stating scientific knowledge is better than philosophical knowledge” (emphasis in original).

Strictly speaking, Brown is wrong about this because Weak Scientism does imply something about the degree to which scientific knowledge is better than philosophical knowledge. Recall that to say that scientific knowledge is quantitatively better than non-scientific knowledge is to say that scientific fields of study publish more research and that scientific research has greater impact than the research published in non-scientific fields of study.

Contrary to what Brown seems to think, we can say to what degree scientific research is superior to non-scientific research in terms of output and impact. That is precisely what bibliometric indicators like h-index and other metrics are for (Rousseau et al. 2018). Such bibliometric indicators allow us to say how many articles are published in a given field, how many of those published articles are cited, and how many times they are cited. For instance, according to Scimago Journal & Country Rank (2018), which contains data from the Scopus database, of the 3,815 Philosophy articles published in the United States in 2016-2017, approximately 14% are cited, and their h-index is approximately 160.

On the other hand, of the 24,378 Psychology articles published in the United States in 2016-2017, approximately 40% are cited, and their h-index is approximately 640. Contrary to what Brown seems to think, then, we can say to what degree research in Psychology is better than research in Philosophy in terms of research output (i.e., number of publications) and research impact (i.e., number of citations). We can use the same bibliometric indicators and metrics to compare research in other scientific and non-scientific fields of study.

As I have already said in my previous reply to Brown, “Weak Scientism does not entail that philosophy is useless” and “I have no interest in defending the charge that philosophy is useless” (Mizrahi 2017b, 11-12). So, I am not sure why Brown brings up (3) again. Since he insists, however, let me explain why philosophers who are concerned about the charge that philosophy is useless should engage with Weak Scientism as well.

Suppose that a foundation or agency is considering whether to give a substantial grant to one of two projects. The first project is that of a philosopher who will sit in her armchair and contemplate the nature of friendship.[3] The second project is that of a team of social scientists who will conduct a longitudinal study of the effects of friendship on human well-being (e.g., Yang et al. 2016).

If Weak Scientism is true, and the foundation or agency wants to fund the project that is likely to yield better results, then it should give the grant to the team of social scientists rather than to the armchair philosopher simply because the former’s project is scientific, whereas the latter’s is not. This is because the scientific project will more likely yield better knowledge than the non-scientific project will. In other words, unlike the project of the armchair philosopher, the scientific project will probably produce more research (i.e., more publications) that will have a greater impact (i.e., more citations) and the knowledge produced will be explanatorily, instrumentally, and predictively more successful than any knowledge that the philosopher’s project might produce.

This example should really hit home for Brown, since reading his latest attack on Weak Scientism gives one the impression that he thinks of philosophy as a personal, “self-improvement” kind of enterprise, rather than an academic discipline or field of study. For instance, he seems to be saying that philosophy is not in the business of producing “new knowledge” or making “discoveries” (Brown 2017b, 17).

Rather, Brown (2017b, 18) suggests that philosophy “is more about individual intellectual progress rather than collective intellectual progress.” Individual progress or self-improvement is great, of course, but I am not sure that it helps Brown’s case in defense of philosophy against what he sees as “the menace of scientism.” For this line of thinking simply adds fuel to the fire set by those who want to see philosophy burn. As I point out in my (2017a), scientists who dismiss philosophy do so because they find it academically useless.

For instance, Hawking and Mlodinow (2010, 5) write that ‘philosophy is dead’ because it ‘has not kept up with developments in science, particularly physics’ (emphasis added). Similarly, Weinberg (1994, 168) says that, as a working scientist, he ‘finds no help in professional philosophy’ (emphasis added). (Mizrahi 2017a, 356)

Likewise, Richard Feynman is rumored to have said that “philosophy of science is about as useful to scientists as ornithology is to birds” (Kitcher 1998, 32). It is clear, then, that what these scientists complain about is professional or academic philosophy. Accordingly, they would have no problem with anyone who wants to pursue philosophy for the sake of “individual intellectual progress.” But that is not the issue here. Rather, the issue is academic knowledge or research.

Does My Defense of Weak Scientism Appeal to Controversial Philosophical Assumptions?

Brown (2017b, 9) argues for (4) on the grounds that I assume that “we are supposed to privilege empirical (I read Mizrahi’s ‘empirical’ here as ‘experimental/scientific’) evidence over non-empirical evidence.” But that is question-begging, Brown claims, since he takes me to be assuming something like the following: “If the question of whether scientific knowledge is superior to [academic] non-scientific knowledge is a question that one can answer empirically, then, in order to pose a serious challenge to my [Mizrahi’s] defense of Weak Scientism, Brown must come up with more than mere ‘what ifs’” (Mizrahi 2017b, 10; quoted in Brown 2017b, 8).

This objection seems to involve a confusion about how defeasible reasoning and defeating evidence are supposed to work. Given that “a rebutting defeater is evidence which prevents E from justifying belief in H by supporting not-H in a more direct way” (Kelly 2016), claims about what is actual cannot be defeated by mere possibilities, since claims of the form “Possibly, p” do not prevent a piece of evidence from justifying belief in “Actually, p” by supporting “Actually, not-p” directly.

For example, the claim “Hillary Clinton could have been the 45th President of the United States” does not prevent my perceptual and testimonial evidence from justifying my belief in “Donald Trump is the 45th President of the United States,” since the former does not support “It is not the case that Donald Trump is the 45th President of the United States” in a direct way. In general, claims of the form “Possibly, p” are not rebutting defeaters against claims of the form “Actually, p.” Defeating evidence against claims of the form “Actually, p” must be about what is actual (or at least probable), not what is merely possible, in order to support “Actually, not-p” directly.

For this reason, although “the production of some sorts of non-scientific knowledge work may be harder than the production of scientific knowledge” (Brown 2017b, 19), Brown gives no reasons to think that it is actually or probably harder, which is why this possibility does nothing to undermine the claim that scientific knowledge is actually better than non-scientific knowledge. Just as it is possible that philosophical knowledge is harder to produce than scientific knowledge, it is also possible that scientific knowledge is harder to produce than philosophical knowledge. It is also possible that scientific and non-scientific knowledge are equally hard to produce.

Similarly, the possibility that “a little knowledge about the noblest things is more desirable than a lot of knowledge about less noble things” (Brown 2017b, 19), whatever “noble” is supposed to mean here, does not prevent my bibliometric evidence (in terms of research output and research impact) from justifying the belief that scientific knowledge is better than non-scientific knowledge. Just as it is possible that philosophical knowledge is “nobler” (whatever that means) than scientific knowledge, it is also possible that scientific knowledge is “nobler” than philosophical knowledge or that they are equally “noble” (Mizrahi 2017b, 9-10).

In fact, even if Brown (2017a, 47) is right that “philosophy is harder than science” and that “knowing something about human persons–particularly qua embodied rational being–is a nobler piece of knowledge than knowing something about any non-rational object” (Brown 2017b, 21), whatever “noble” is supposed to mean here, it would still be the case that scientific fields produce more knowledge (as measured by research output), and more impactful knowledge (as measured by research impact), than non-scientific disciplines.

So, I am not sure why Brown keeps insisting on mentioning these mere possibilities. He also seems to forget that the natural and social sciences study human persons as well. Even if knowledge about human persons is “nobler” (whatever that means), there is a lot of scientific knowledge about human persons coming from scientific fields, such as anthropology, biology, genetics, medical science, neuroscience, physiology, psychology, and sociology, to name just a few.

One of the alleged “controversial philosophical assumptions” that my defense of Weak Scientism rests on, and that Brown (2017a) complains about the most in his previous attack on Weak Scientism, is my characterization of philosophy as the scholarly work that professional philosophers do. In my previous reply, I argue that Brown is not in a position to complain that this is a “controversial philosophical assumption,” since he rejects my characterization of philosophy as the scholarly work that professional philosophers produce, but he does not tell us what counts as philosophical (Mizrahi 2017b, 13). Well, it turns out that Brown does not reject my characterization of philosophy after all. For, after he was challenged to say what counts as philosophical, he came up with the following “sufficient condition for pieces of writing and discourse that count as philosophy” (Brown 2017b, 11):

(P) Those articles published in philosophical journals and what academics with a Ph.D. in philosophy teach in courses at public universities with titles such as Introduction to Philosophy, Metaphysics, Epistemology, Normative Ethics, and Philosophy of Science (Brown 2017b, 11; emphasis added).

Clearly, this is my characterization of philosophy in terms of the scholarly work that professional philosophers produce. Brown simply adds teaching to it. Since he admits that “scientists teach students too” (Brown 2017b, 18), however, it is not clear how adding teaching to my characterization of philosophy is supposed to support his attack on Weak Scientism. In fact, it may actually undermine his attack on Weak Scientism, since there is a lot more teaching going on in STEM fields than in non-STEM fields.

According to data from the National Center for Education Statistics (2017), in the 2015-16 academic year, post-secondary institutions in the United States conferred only 10,157 Bachelor’s degrees in philosophy and religious studies compared to 113,749 Bachelor’s degrees in biological and biomedical sciences, 106,850 Bachelor’s degrees in engineering, and 117,440 in psychology. In general, in the 2015-2016 academic year, 53.3% of the Bachelor’s degrees conferred by post-secondary institutions in the United States were degrees in STEM fields, whereas only 5.5% of conferred Bachelor’s degrees were in the humanities (Figure 1).

Figure 1. Bachelor’s degrees conferred by post-secondary institutions in the US, by field of study, 2015-2016 (Source: NCES)

 

Clearly, then, there is a lot more teaching going on in science than in philosophy (or even in the humanities in general), since a lot more students take science courses and graduate with degrees in scientific fields of study. So, even if Brown is right that we should include teaching in what counts as philosophy, it is still the case that scientific fields are quantitatively better than non-scientific fields.

Since Brown (2017b, 13) seems to agree that philosophy (at least in part) is the scholarly work that academic philosophers produce, it is peculiar that he complains, without argument, that “an understanding of philosophy and knowledge as operational is […] shallow insofar as philosophy and knowledge can’t fit into the narrow parameters of another empirical study.” Once Brown (2017b, 11) grants that “Those articles published in philosophical journals” count as philosophy, he thereby also grants that these journal articles can be studied empirically using the methods of bibliometrics, information science, or data science.

That is, Brown (2017b, 11) concedes that philosophy consists (at least in part) of “articles published in philosophical journals,” and so these articles can be compared to other articles published in science journals to determine research output, and they can also be compared to articles published in science journals in terms of citation counts to determine research impact. What exactly is “shallow” about that? Brown does not say.

A, perhaps unintended, consequence of Brown’s (P) is that the “great thinkers from the past” (Brown 2017b, 18), those that Brown (2017b, 13) likes to remind us “were not professional philosophers,” did not do philosophy, by Brown’s own lights. For “Socrates, Plato, Augustine, Descartes, Locke, and Hume” (Brown 2017b, 13) did not publish in philosophy journals, were not academics with a Ph.D. in philosophy, and did not teach at public universities courses “with titles such as Introduction to Philosophy, Metaphysics, Epistemology, Normative Ethics, and Philosophy of Science” (Brown 2017b, 11).

Another peculiar thing about Brown’s (P) is the restriction of the philosophical to what is being taught in public universities. What about community colleges and private universities? Is Brown suggesting that philosophy courses taught at private universities do not count as philosophy courses? This is peculiar, especially in light of the fact that, at least according to The Philosophical Gourmet Report (Brogaard and Pynes 2018), the top ranked philosophy programs in the United States are mostly located in private universities, such as New York University and Princeton University.

Is My Defense of Weak Scientism a Scientific or a Philosophical Argument?

Brown argues for (5) on the grounds that my (2017a) is published in a philosophy journal, namely, Social Epistemology, and so it a piece of philosophical knowledge by my lights, since I count as philosophy the research articles that are published in philosophy journals.

Brown would be correct about this if Social Epistemology were a philosophy journal. But it is not. Social Epistemology: A Journal of Knowledge, Culture and Policy is an interdisciplinary journal. The journal’s “aim and scope” statement makes it clear that Social Epistemology is an interdisciplinary journal:

Social Epistemology provides a forum for philosophical and social scientific enquiry that incorporates the work of scholars from a variety of disciplines who share a concern with the production, assessment and validation of knowledge. The journal covers both empirical research into the origination and transmission of knowledge and normative considerations which arise as such research is implemented, serving as a guide for directing contemporary knowledge enterprises (Social Epistemology 2018).

The fact that Social Epistemology is an interdisciplinary journal, with contributions from “Philosophers, sociologists, psychologists, cultural historians, social studies of science researchers, [and] educators” (Social Epistemology 2018) would not surprise anyone who is familiar with the history of the journal. The founding editor of the journal is Steve Fuller, who was trained in an interdisciplinary field, namely, History and Philosophy of Science (HPS), and is currently the Auguste Comte Chair in Social Epistemology in the Department of Sociology at Warwick University. Brown (2017b, 15) would surely agree that sociology is not philosophy, given that, for him, “cataloguing what a certain group of people believes is sociology and not philosophy.” The current executive editor of the journal is James H. Collier, who is a professor of Science and Technology in Society at Virginia Tech, and who was trained in Science and Technology Studies (STS), which is an interdisciplinary field as well.

Brown asserts without argument that the methods of a scientific field of study, such as sociology, are different in kind from those of philosophy: “What I contend is that […] philosophical methods are different in kind from those of the experimental scientists [sciences?]” (Brown 2017b, 24). He then goes on to speculate about what it means to say that an explanation is testable (Brown 2017b, 25). What Brown comes up with is rather unclear to me. For instance, I have no idea what it means to evaluate an explanation by inductive generalization (Brown 2017b, 25).

Instead, Brown should have consulted any one of the logic and reasoning textbooks I keep referring to in my (2017a) and (2017b) to find out that it is generally accepted among philosophers that the good-making properties of explanations, philosophical and otherwise, include testability among other good-making properties (see, e.g., Sinnott-Armstrong and Fogelin 2010, 257). As far as testability is concerned, to test an explanation or hypothesis is to determine “whether predictions that follow from it are true” (Salmon 2013, 255). In other words, “To say that a hypothesis is testable is at least to say that some prediction made on the basis of that hypothesis may confirm or disconfirm it” (Copi et al. 2011, 515).

For this reason, Feser’s analogy according to which “to compare the epistemic values of science and philosophy and fault philosophy for not being good at making testable predications [sic] is like comparing metal detectors and gardening tools and concluding gardening tools are not as good as metal detectors because gardening tools do not allow us to successfully detect for metal” (Brown 2017b, 25), which Brown likes to refer to (Brown 2017a, 48), is inapt.

It is not an apt analogy because, unlike metal detectors and gardening tools, which serve different purposes, both science and philosophy are in the business of explaining things. Indeed, Brown admits that, like good scientific explanations, “good philosophical theories explain things” (emphasis in original). In other words, Brown admits that both scientific and philosophical theories are instruments of explanation (unlike gardening and metal-detecting instruments). To provide good explanations, then, both scientific and philosophical theories must be testable (Mizrahi 2017b, 19-20).

What Is Wrong with Persuasive Definitions of Scientism?

Brown (2017b, 31) argues for (6) on the grounds that “persuasive definitions are [not] always dialectically pernicious.” He offers an argument whose conclusion is “abortion is murder” as an example of an argument for a persuasive definition of abortion. He then outlines an argument for a persuasive definition of scientism according to which “Weak Scientism is a view that has its advocates putting too high a value on scientific knowledge” (Brown 2017b, 32).

The problem, however, is that Brown is confounding arguments for a definition with the definition itself. Having an argument for a persuasive definition does not change the fact that it is a persuasive definition. To illustrate this point, let me give an example that I think Brown will appreciate. Suppose I define theism as an irrational belief in the existence of God. That is, “theism” means “an irrational belief in the existence of God.” I can also provide an argument for this definition:

P1: If it is irrational to have paradoxical beliefs and God is a paradoxical being, then theism is an irrational belief in the existence of God.

P2: It is irrational to have paradoxical beliefs and God is a paradoxical being (e.g., the omnipotence paradox).[4]

Therefore,

C: Theism is an irrational belief in the existence of God.

But surely, theists will complain that my definition of theism is a “dialectically pernicious” persuasive definition. For it stacks the deck against theists. It states that theists are already making a mistake, by definition, simply by believing in the existence of God. Even though I have provided an argument for this persuasive definition of theism, my definition is still a persuasive definition of theism, and my argument is unlikely to convince anyone who doesn’t already think that theism is irrational. Indeed, Brown (2017b, 30) himself admits that much when he says “good luck with that project!” about trying to construct a sound argument for “abortion is murder.” I take this to mean that pro-choice advocates would find his argument for “abortion is murder” dialectically inert precisely because it defines abortion in a manner that transfers “emotive force” (Salmon 2013, 65), which they cannot accept.

Likewise, theists would find the argument above dialectically inert precisely because it defines theism in a manner that transfers “emotive force” (Salmon 2013, 65), which they cannot accept. In other words, Brown seems to agree that there are good dialectical reasons to avoid appealing to persuasive definitions. Therefore, like “abortion is murder,” “theism is an irrational belief in the existence of God,” and “‘Homosexual’ means ‘one who has an unnatural desire for those of the same sex’” (Salmon 2013, 65), “Weak Scientism is a view that has its advocates putting too high a value on scientific knowledge” (Brown 2017b, 32) is a “dialectically pernicious” persuasive definition (cf. Williams 2015, 14).

Like persuasive definitions in general, it “masquerades as an honest assignment of meaning to a term while condemning or blessing with approval the subject matter of the definiendum” (Hurley 2015, 101). As I have pointed out in my (2017a), the problem with such definitions is that they “are strategies consisting in presupposing an unaccepted definition, taking a new unknowable description of meaning as if it were commonly shared” (Macagno and Walton 2014, 205).

As for Brown’s argument for the persuasive definition of Weak Scientism, according to which it “is a view that has its advocates putting too high a value on scientific knowledge” (Brown 2017b, 32), a key premise in this argument is the claim that there is a piece of philosophical knowledge that is better than scientific knowledge. This is premise 36 in Brown’s argument:

Some philosophers qua philosophers know that (a) true friendship is a necessary condition for human flourishing and (b) the possession of the moral virtues or a life project aimed at developing the moral virtues is a necessary condition for true friendship and (c) (therefore) the possession of the moral virtues or a life project aimed at developing the moral virtues is a necessary condition for human flourishing (see, e.g., the arguments in Plato’s Gorgias) and knowledge concerning the necessary conditions of human flourishing is better than any sort of scientific knowledge (see, e.g., St. Augustine’s Confessions, book five, chapters iii and iv) [assumption]

There is a lot to unpack here, but I will focus on what I take to be the points most relevant to the scientism debate. First, Brown assumes 36 without argument, but why think it is true? In particular, why think that (a), (b), and (c) count as philosophical knowledge? Brown says that philosophers know (a), (b), and (c) in virtue of being philosophers, but he does not tell us why that is the case.

After all, accounts of friendship, with lessons about the significance of friendship, predate philosophy (see, e.g., the friendship of Gilgamesh and Enkidu in The Epic of Gilgamesh). Did it really take Plato and Augustine to tell us about the significance of friendship? In fact, on Brown’s characterization of philosophy, namely, (P), (a), (b), and (c) do not count as philosophical knowledge at all, since Plato and Augustine did not publish in philosophy journals, were not academics with a Ph.D. in philosophy, and did not teach at public universities courses “with titles such as Introduction to Philosophy, Metaphysics, Epistemology, Normative Ethics, and Philosophy of Science” (Brown 2017b, 11).

Second, some philosophers, like Epicurus, need (and think that others need) friends to flourish, whereas others, like Diogenes of Sinope, need no one. For Diogenes, friends will only interrupt his sunbathing (Arrian VII.2). My point is not simply that philosophers disagree about the value of friendship and human flourishing. Of course they disagree.[5]

Rather, my point is that, in order to establish general truths about human beings, such as “Human beings need friends to flourish,” one must employ the methods of science, such as randomization and sampling procedures, blinding protocols, methods of statistical analysis, and the like; otherwise, one would simply commit the fallacies of cherry-picking anecdotal evidence and hasty generalization (Salmon 2013, 149-151). After all, the claim “Some need friends to flourish” does not necessitate, or even make more probable, the truth of “Human beings need friends to flourish.”[6]

Third, why think that “knowledge concerning the necessary conditions of human flourishing is better than any sort of scientific knowledge” (Brown 2017b, 32)? Better in what sense? Quantitatively? Qualitatively? Brown does not tell us. He simply declares it “self-evident” (Brown 2017b, 32). I take it that Brown would not want to argue that “knowledge concerning the necessary conditions of human flourishing” is better than scientific knowledge in the quantitative (i.e., in terms of research output and research impact) and qualitative (i.e., in terms of explanatory, instrumental, and predictive success) respects in which scientific knowledge is better than non-scientific knowledge, according to Weak Scientism.

If so, then in what sense exactly “knowledge concerning the necessary conditions of human flourishing” (Brown 2017b, 32) is supposed to be better than scientific knowledge? Brown (2017b, 32) simply assumes that without argument and without telling us in what sense exactly “knowledge concerning the necessary conditions of human flourishing is better than any sort of scientific knowledge” (Brown 2017b, 32).

Of course, philosophy does not have a monopoly on friendship and human flourishing as research topics. Psychologists and sociologists, among other scientists, work on friendship as well (see, e.g., Hojjat and Moyer 2017). To get an idea of how much research on friendship is done in scientific fields, such as psychology and sociology, and how much is done in philosophy, we can use a database like Web of Science.

Currently (03/29/2018), there are 12,334 records in Web of Science on the topic “friendship.” Only 76 of these records (0.61%) are from the Philosophy research area. Most of the records are from the Psychology (5,331 records) and Sociology (1,111) research areas (43.22% and 9%, respectively). As we can see from Figure 2, most of the research on friendship is done in scientific fields of study, such as psychology, sociology, and other social sciences.

Figure 2. Number of records on the topic “friendship” in Web of Science by research area (Source: Web of Science)

 

In terms of research impact, too, scientific knowledge about friendship is superior to philosophical knowledge about friendship. According to Web of Science, the average citations per year for Psychology research articles on the topic of friendship is 2826.11 (h-index is 148 and the average citations per item is 28.1), and the average citations per year for Sociology research articles on the topic of friendship is 644.10 (h-index is 86 and the average citations per item is 30.15), whereas the average citations per year for Philosophy research articles on friendship is 15.02 (h-index is 13 and the average citations per item is 8.11).

Quantitatively, then, psychological and sociological knowledge on friendship is better than philosophical knowledge in terms of research output and research impact. Both Psychology and Sociology produce significantly more research on friendship than Philosophy does, and the research they produce has significantly more impact (as measured by citation counts) than philosophical research on the same topic.

Qualitatively, too, psychological and sociological knowledge about friendship is better than philosophical knowledge about friendship. For, instead of rather vague statements about how “true friendship is a necessary condition for human flourishing” (Brown 2017b, 32) that are based on mostly armchair speculation, psychological and sociological research on friendship provides detailed explanations and accurate predictions about the effects of friendship (or lack thereof) on human well-being.

For instance, numerous studies provide evidence for the effects of friendships or lack of friendships on physical well-being (see, e.g., Yang et al. 2016) as well as mental well-being (see, e.g., Cacioppo and Patrick 2008). Further studies provide explanations for the biological and genetic bases of these effects (Cole et al. 2011). This knowledge, in turn, informs interventions designed to help people deal with loneliness and social isolation (see, e.g., Masi et al. 2010).[7]

To sum up, Brown (2017b, 32) has given no reasons to think that “knowledge concerning the necessary conditions of human flourishing is better than any sort of scientific knowledge.” He does not even tell us what “better” is supposed to mean here. He also ignores the fact that scientific fields of study, such as psychology and sociology, produce plenty of knowledge about human flourishing, both physical and mental well-being. In fact, as we have seen, science produces a lot more knowledge about topics related to human well-being, such as friendship, than philosophy does. For this reason, Brown (2017b, 32) has failed to show that “there is non-scientific form of knowledge better than scientific knowledge.”

Conclusion

At this point, I think it is quite clear that Brown and I are talking past each other on a couple of levels. First, I follow scientists (e.g., Weinberg 1994, 166-190) and philosophers (e.g., Haack 2007, 17-18 and Peels 2016, 2462) on both sides of the scientism debate in treating philosophy as an academic discipline or field of study, whereas Brown (2017b, 18) insists on thinking about philosophy as a personal activity of “individual intellectual progress.” Second, I follow scientists (e.g., Hawking and Mlodinow 2010, 5) and philosophers (e.g., Kidd 2016, 12-13 and Rosenberg 2011, 307) on both sides of the scientism debate in thinking about knowledge as the scholarly work or research produced in scientific fields of study, such as the natural sciences, as opposed to non-scientific fields of study, such as the humanities, whereas Brown insists on thinking about philosophical knowledge as personal knowledge.

To anyone who wishes to defend philosophy’s place in research universities alongside academic disciplines, such as history, linguistics, and physics, armed with this conception of philosophy as a “self-improvement” activity, I would use Brown’s (2017b, 30) words to say, “good luck with that project!” A much more promising strategy, I propose, is for philosophy to embrace scientific ways of knowing and for philosophers to incorporate scientific methods into their research.[8]

Contact details: mmizrahi@fit.edu

References

Arrian. “The Final Phase.” In Alexander the Great: Selections from Arrian, Diodorus, Plutarch, and Quintus Curtius, edited by J. Romm, translated by P. Mensch and J. Romm, 149-172. Indianapolis, IN: Hackett Publishing Company, Inc., 2005.

Ashton, Z., and M. Mizrahi. “Intuition Talk is Not Methodologically Cheap: Empirically Testing the “Received Wisdom” about Armchair Philosophy.” Erkenntnis (2017): DOI 10.1007/s10670-017-9904-4.

Ashton, Z., and M. Mizrahi. “Show Me the Argument: Empirically Testing the Armchair Philosophy Picture.” Metaphilosophy 49, no. 1-2 (2018): 58-70.

Cacioppo, J. T., and W. Patrick. Loneliness: Human Nature and the Need for Social Connection. New York: W. W. Norton & Co., 2008.

Cole, S. W., L. C. Hawkley, J. M. G. Arevaldo, and J. T. Cacioppo. “Transcript Origin Analysis Identifies Antigen-Presenting Cells as Primary Targets of Socially Regulated Gene Expression in Leukocytes.” Proceedings of the National Academy of Sciences 108, no. 7 (2011): 3080-3085.

Copi, I. M., C. Cohen, and K. McMahon. Introduction to Logic. Fourteenth Edition. New York: Prentice Hall, 2011.

Brogaard, B., and C. A. Pynes (eds.). “Overall Rankings.” The Philosophical Gourmet Report. Wiley Blackwell, 2018. Available at http://34.239.13.205/index.php/overall-rankings/.

Brown, C. M. “Some Objections to Moti Mizrahi’s ‘What’s So Bad about Scientism?’.” Social Epistemology Review and Reply Collective 6, no. 8 (2017a): 42-54.

Brown, C. M. “Defending Some Objections to Moti Mizrahi’s Arguments Scientism.” Social Epistemology Review and Reply Collective 7, no. 2 (2017b): 1-35.

Haack, S. Defending Science–within Reason: Between Scientism and Cynicism. New York: Prometheus Books, 2007.

Hawking, S., and L. Mlodinow. The Grand Design. New York: Bantam Books, 2010.

Hojjat, M., and A. Moyer (eds.). The Psychology of Friendship. New York: Oxford University Press, 2017.

Hurley, P. J. A Concise Introduction to Logic. Twelfth Edition. Stamford, CT: Cengage Learning, 2015.

Kelly, T. “Evidence.” In E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2016 Edition). https://plato.stanford.edu/archives/win2016/entries/evidence/.

Kidd, I. J. “How Should Feyerabend Have Defended Astrology? A Reply to Pigliucci.” Social Epistemology Review and Reply Collective 5 (2016): 11–17.

Kitcher, P. “A Plea for Science Studies.” In A House Built on Sand: Exposing Postmodernist Myths about Science, edited by N. Koertge, 32–55. New York: Oxford University Press, 1998.

Lewis, C. S. The Four Loves. New York: Harcourt Brace & Co., 1960.

Macagno, F., and D. Walton. Emotive Language in Argumentation. New York: Cambridge University Press, 2014.

Masi, C. M., H. Chen, and L. C. Hawkley. “A Meta-Analysis of Interventions to Reduce Loneliness.” Personality and Social Psychology Review 15, no. 3 (2011): 219-266.

Mizrahi, M. “Intuition Mongering.” The Reasoner 6, no. 11 (2012): 169-170.

Mizrahi, M. “More Intuition Mongering.” The Reasoner 7, no. 1 (2013a): 5-6.

Mizrahi, M. “What is Scientific Progress? Lessons from Scientific Practice.” Journal for General Philosophy of Science 44, no. 2 (2013b): 375-390.

Mizrahi, M. “New Puzzles about Divine Attributes.” European Journal for Philosophy of Religion 5, no. 2 (2013c): 147-157.

Mizrahi, M. “The Pessimistic Induction: A Bad Argument Gone Too Far.” Synthese 190, no. 15 (2013d): 3209-3226.

Mizrahi, M. “Does the Method of Cases Rest on a Mistake?” Review of Philosophy and Psychology 5, no. 2 (2014): 183-197.

Mizrahi, M. “On Appeals to Intuition: A Reply to Muñoz-Suárez.” The Reasoner 9, no. 2 (2015a): 12-13.

Mizrahi, M. “Don’t Believe the Hype: Why Should Philosophical Theories Yield to Intuitions?” Teorema: International Journal of Philosophy 34, no. 3 (2015b): 141-158.

Mizrahi, M. “Historical Inductions: New Cherries, Same Old Cherry-Picking.” International Studies in the Philosophy of Science 29, no. 2 (2015c): 129-148.

Mizrahi, M. “Three Arguments against the Expertise Defense.” Metaphilosophy 46, no. 1 (2015d): 52-64.

Mizrahi, M. “The History of Science as a Graveyard of Theories: A Philosophers’ Myth?” International Studies in the Philosophy of Science 30, no. 3 (2016): 263-278.

Mizrahi, M. “What’s So Bad about Scientism?” Social Epistemology 31, no. 4 (2017a): 351-367.

Mizrahi, M. “In Defense of Weak Scientism: A Reply to Brown.” Social Epistemology Review and Reply Collective 6, no. 11 (2017b): 9-22.

Mizrahi, M. “Introduction.” In The Kuhnian Image of Science: Time for a Decisive Transformation? Edited by M. Mizrahi, 1-22. London: Rowman & Littlefield, 2017c.

National Center for Education Statistics. “Bachelor’s degrees conferred by postsecondary institutions, by field of study: Selected years, 1970-71 through 2015-16.” Digest of Education Statistics (2017). https://nces.ed.gov/programs/digest/d17/tables/dt17_322.10.asp?current=yes.

Peels, R. “The Empirical Case Against Introspection.” Philosophical Studies 17, no. 9 (2016): 2461-2485.

Peels, R. “Ten Reasons to Embrace Scientism.” Studies in History and Philosophy of Science Part A 63 (2017): 11-21.

Rosenberg, A. The Atheist’s Guide to Reality: Enjoying Life Without Illusions. New York: W. W. Norton, 2011.

Rousseau, R., L. Egghe, and R. Guns. Becoming Metric-Wise: A Bibliometric Guide for Researchers. Cambridge, MA: Elsevier, 2018.

Salmon, M. H. Introduction to Logic and Critical Thinking. Sixth Edition. Boston, MA: Wadsworth, 2013.

Scimago Journal & Country Rank. “Subject Bubble Chart.” SJR: Scimago Journal & Country Rank. Accessed on April 3, 2018. http://www.scimagojr.com/mapgen.php?maptype=bc&country=US&y=citd.

Sinnott-Armstrong, W., and R. J. Fogelin. Understanding Arguments: An Introduction to Informal Logic. Eighth Edition. Belmont, CA: Wadsworth Cengage Learning, 2010.

Social Epistemology. “Aims and Scope.” Social Epistemology: A Journal of Knowledge, Culture and Policy (2018). https://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=tsep20.

Weinberg, S. Dreams of a Final Theory: The Scientist’s Search for the Ultimate Laws of Nature. New York: Random House, 1994.

Williams, R. N. “Introduction.” In Scientism: The New Orthodoxy, edited by R. N. Williams and D. N. Robinson, 1-22. New York: Bloomsbury Academic, 2015.

Yang, C. Y., C. Boen, K. Gerken, T. Li, K. Schorpp, and K. M. Harris. “Social Relationships and Physiological Determinants of Longevity Across the Human Life Span.” Proceedings of the National Academy of Sciences 113, no. 3 (2016): 578-583.

[1] I thank Adam Riggio for inviting me to respond to Brown’s second attack on Weak Scientism.

[2] On why appeals to intuition are bad arguments, see Mizrahi (2012), (2013a), (2014), (2015a), (2015b), and (2015d).

[3] I use friendship as an example here because Brown (2017b, 31) uses it as an example of philosophical knowledge. I will say more about that in Section 6.

[4] For more on paradoxes involving the divine attributes, see Mizrahi (2013c).

[5] “Friendship is unnecessary, like philosophy, like art, like the universe itself (for God did not need to create)” (Lewis 1960, 71).

[6] On fallacious inductive reasoning in philosophy, see Mizrahi (2013d), (2015c), (2016), and (2017c).

[7] See also “The Friendship Bench” project: https://www.friendshipbenchzimbabwe.org/.

[8] For recent examples, see Ashton and Mizrahi (2017) and (2018).

Author Information: William Davis, Virginia Tech, USA SERRC, widavis@vt.edu; Martin Evenden, National Taichung University of Education, Taiwan, SERRC, evendenmartin@hotmail.com; Gregory Sandstrom, European Humanities University, Lithuania SERRC, gregorisandstrom@yahoo.com and Aliaksandr Puptsau, European Humanities University, Lithuania alexander.puptsev@ehu.lt

Davis, William, Martin Evenden, Gregory Sandstrom and Aliaksandr Puptsau. 2013. “Are MOOCs the Future of Higher Education? A Collective Judgment Forum.” Social Epistemology Review and Reply Collective 2 (7) 23-27.

The PDF of the article gives specific page numbers. Shortlink: http://wp.me/p1Bfg0-Os

Over the last several months, discussions surrounding the possibilities and pitfalls of massively open online courses (MOOCs) for higher education have continued to grow. These discussions were amplified when “An Open Letter to Professor Michael Sandel From the Philosophy Department at San Jose State U” was published via the Chronicle of Higher Education.

MOOCs as ‘a’ Future for Higher Education
William Davis, Virginia Tech, USA

As a current graduate student aspiring to teach at the university level, the notion that Massive Open Online Classes (MOOCs) are the future of higher education gives me pause. This Collective Judgment Forum (CFJ) question requires us, at a minimum, to address: 1. What higher education is; 2. What MOOCs are; and, 3. What MOOCs can, and should, do. What follows is an attempt at a limited answer, but one that I hope sparks further discussion and criticism on this board. Continue Reading…