Archives For information theory

Author Information: Gregory Sandstrom, Arena Blockchain,

Sandstrom, Gregory. “Is Blockchain an ‘Evolutionary’ or ‘Revolutionary’ Technology, and So What If It Is?: Digitally Extending Satoshi Nakamoto’s Distributed Ledger Innovation.” Social Epistemology Review and Reply Collective 8, no. 3 (2019): 17-49.

The pdf of the article gives specific page references, and includes the full text of the article. Shortlink, Part One: Shortlink: Part Two:

Image by Tiger Pixel via Flickr / Creative Commons


Ideological Blockchain Evolutionism

There is also a position held that promotes what I call ‘ideological evolutionism’ in insisting that blockchain must be called a particularly ‘evolutionary’ phenomenon. This appears to be due largely to a broader ideological framework to which the authors are already committed.

This view requires either that blockchain should not be seen as a ‘revolutionary’ technology or use ideas available in literature produced by academics that promote something akin to the ‘evolution of everything,’ i.e. that ‘everything evolves’ based on the logic that ‘everything changes.’ This ideology is professed in the works of Matt Ridley and David Sloan Wilson among others.

Patrick T. Harker, President and Chief Executive Officer for the Federal Reserve Bank of Philadelphia, tells us that, “banking evolved its products and appendages just like the first single-cell organisms evolved fins and gills and eventually feet and legs.” (2017: 4) Here an analogy with the origins of life and animals implies that blockchain is an innovation of almost mythical proportion. Though it may surprise the people who use ‘evolution’ colloquially to hear this, not a few people actually do link the rise of blockchain to a broader understanding of life, human existence and their general worldview.

One of the most well-known ideological blockchain evolutionists is Naval Ravikant, co-founder of Angel List. “The Evolution of Everything by Matt Ridley, one of my favorite authors,” tells Ravikant. “If I can’t verify it on my own or if I cannot get there through science, then it may be true, it may be false, but it’s not falsifiable so I cannot view it as a fundamental truth. On the other side, I do know that evolution is true. I do know that we are evolved as survival and replication machines. I do know that we have an ego so that we get up off the ground and worms don’t eat us and we actually take action.” Ravikant also appeared on a podcast with Tim Ferris using a title “The Evolutionary Angel[1].” In short, Ravikant says, “I think almost everything about humans and human civilization is explained better by evolution than anything else[2].” To clarify what he means, he says,

“I use evolution as my binding principle in that it can explain a lot about how we behave towards each other and why we do certain things. / Ignoring that your genes want you to live in a certain way is a delusion that is going to hurt you. / I think a lot of modern society can be explained through evolution. One theory is that civilization exists to answer the question of who gets to mate. If you look around, from a purely sexual selection perspective, sperm is abundant and eggs are scarce. It’s an allocation problem. How do you choose which sperm gets the egg? / Literally all of the works of mankind and womankind can be traced down to people trying to solve that problem.”[3]

In short, we see an attempt at the ‘naturalisation’ of blockchain technology based on ideology or worldview, rather than ‘science.’

Similarly, but with a more academic focus, Chris Berg et al. (2018) are promoting an institutional evolutionary approach that mixes together ‘development’ with ‘evolution’. They ask: “How do blockchain protocols develop? How do they evolve? It is useful to see the development of blockchain innovation through the entrepreneurial innovation literature. Each sequential adaptation of a blockchain represents a new economic organisation, such as a firm.” (Ibid: 3)

For them, “Blockchain protocols offer us an evolutionary window into institutional change. The protocols are evolving under variation, replication and selection conditions, and researchers have a near complete and comprehensive window into those changes.” (Ibid: 10) This choice of terms follows on the work of Donald T. Campbell who attempted to apply Darwinian principles regarding biology to the human world, using the controversial notion of ‘blind variation and selective retention’ (cf. the Darwinian notion of ‘random mutation and natural selection’), which at the same time dislocates humanity’s power of choice by removing the teleological impulse[4] that is present in non-evolutionary and trans-evolutionary (Sandstrom 2016) viewpoints.

Nick Szabo is a major figure in blockchain space, perhaps most known for his coinage of the term ‘smart contract.’ Szabo is also somewhat prolific in his use of the term ‘evolution’ when it comes to cultural artefacts. He writes, “Common law is a highly evolved system of security for persons and property.” This draws on his general belief that, “Over many centuries of cultural evolution has emerged both the concept of contract and principles related to it, encoded into common law. Algorithmic information theory suggests that such evolved structures are often prohibitively costly to recompute. If we started from scratch, using reason and experience, it could take many centuries to redevelop sophisticated ideas like property rights that make the modern free market work.”

Szabo, however, notes that, “the digital revolution is radically changing the kinds of relationships we can have. … New institutions, and new ways to formalize the relationships that make up these institutions, are now made possible by the digital revolution. I call these new contracts ‘smart,’ because they are far more functional than their inanimate paper-based ancestors.” (1996) At the same time, he reminds us that, “Societies have evolved institutions such as firms and competitive markets to set prices, legal precedents and judicial proceedings to make judgments, and so forth.” (2002) Thus, we are proposed with a digital revolution happening inside of a broadly evolutionary version of human history.

Kartik Hegadekatti (2017) believes that, “Man has not only evolved biologically and culturally but also economically. Human economy has grown over many centuries through continuous addition of value. This value addition has been an evolutionary factor as it has influenced the formation of the main economic sectors-namely Primary, Secondary and Tertiary. Recently after the advent of Blockchain technology, Bitcoin achieved Gold parity. This paper analyses whether such an event will have any impact on the evolution of our economies.”

He suggests that,

“Man first settled down for agriculture, and started the process of economic and social development. In fact, this event led to conditions where mankind could experiment and evolve new economic and social systems. Earlier, during the hunter-gatherer phase, there were very few niche specialties. A hunter had to sharpen his [sic] own spear and go to hunt with the group. Once man settled down, distribution and differentiation of labor started. Villages sprang up where there were blacksmiths, cattle herders, and traders etc. who became part of the then-nascent human society.” (2017: 3)

Further, he writes that, “Consequently we may witness an explosion in technology entities, akin to the industrial revolution; A Technology Revolution. This may culminate in the creation of a truly Artificial Intelligence (as investment and research into Data analytics and automation technology will increase, thanks to investment in Blockchain Technology) leading to Technological Singularity.” (Ibid: 6)

In this final example of ideological blockchain evolutionism, we notice the author predicting a ‘Technological Singularity’ (cf. Ray Kurzweil’s dystopian scenario for humanity), which presents a kind of teleological goal and aim for human-machine interaction. Proponents of blockchain development who share this view may thus somehow still believe in technological revolutions that happen within a broader worldview in which everything, inevitably, is always and everywhere evolving.

Digitally Extending Blockchain

“The idea of cultural evolution strikes me as nothing but a dodge to put off the work of doing th[e] thinking, a piece of displacement activity brought in to dodge the conflict. It is not the right way to grasp the continuity between human and non-human nature. We need to drop it and find a better path[5].” – Mary Midgley (1984)

“Practitioners should be skeptical of claims of revolutionary technology.”

– Arvind Naryanan and Jeremy Clark (2017)

After having considered the ways various people write about blockchain as a constantly changing and ‘evolving’ technology, potentially a ‘revolutionary’ one, in this section I will offer an additional approach to blockchain development. My view is that blockchain technology is an example of a ‘social machine[6]‘ (Berners-Lee 1999) that most closely resembles the educational and agricultural extension movements from the late 19th and 20th centuries, which continue around the world today.

It is not necessary and can even be harmful or at least restrictive to use ‘evolutionary’ language to describe this alternative approach. In the current 21st century, we can thus consider the emergence and development of blockchain as a form of ‘digital extension services,’ which I will briefly elaborate on below and further in a forthcoming book chapter (Bailetti IGI, 2019).

The first thing to realise in order to make a simple yet crucial shift in language is that ‘change’ is the master category, not ‘evolution’ or ‘revolution’. That is to say that both evolution and revolution require change to happen, but change need not be either evolutionary or revolutionary. That is what makes change the master category over both evolution and revolution.

This basic semantic point serves an aim to help curb the rampant over-use and exaggeration of the ‘biological theory of evolution’ into the field of technology development that at the same time largely avoids identifying non-evolutionary or trans-evolutionary (Sandstrom 2017c) types of change. Instead, properly identifying the master category reveals that the intended new directions of social and cultural change due to blockchains are happening less rapidly and possibly also less disruptively compared to what many ‘blockchain revolution’ proponents enthusiastically claim.

Here it is worth noting that blockchain technology is based on not a few prior innovations, which when taken into account make it appear less revolutionary and more step-wise logically sequential. Such is the case that Naryanan and Clark make in their impressive paper “Bitcoin’s Academic Pedigree (2017). In it they state that, “many proposed applications of blockchains, especially in banking, don’t use Nakamoto consensus. Rather, they use the ledger data structure and Byzantine agreement, which, as shown, date to the ’90s. This belies the claim that blockchains are a new and revolutionary technology.” (Ibid)

They continue, concluding that, “most of the ideas in bitcoin that have generated excitement in the enterprise, such as distributed ledgers and Byzantine agreement, actually date back 20 years or more. Recognize that your problem may not require any breakthroughs—there may be long-forgotten solutions in research papers.” (Ibid) While nevertheless celebrating the significant achievement that Satoshi Nakamoto made in bringing multiple previous innovations together into Bitcoin, Naryanan and Clark reveal how the ‘revolutionary’ language of some proponents of blockchain can be considered as an exaggeration that avoids its historical precursors and likewise neglects the ‘shoulders of giants’ on which Nakamoto stood.

Junking the Blockchain Hype

Instead of either ‘evolution’ or ‘revolution,’ the alternative term ‘extension’ identifies inherently teleological, intentional and goal-oriented change-over-time. This term also adds considerable untapped value in connecting directly with the history of educational extension and agricultural extension mentioned in the introduction.

In both cases, the extension of knowledge, training and scientific innovations from centres to margins and from people in cities and at research institutes to people in rural areas around the world without convenient access to educational institutions has opened new opportunities for social learning and overall human development[7].

Thus, blockchain framed as an example of ‘digital extension services’ provides an analogy with applications for business, finance, governance[8], military[9], education, agriculture[10], cultural heritage[11], and any and all other institutions in society that may make use of peer-to-peer transaction-based systems that can be measured with data collection.

Burton Swanson et al. define ‘extension’ as “the organized exchange of information and the purposive transfer of skills.” (1997) It was such intentional diffusion of creative innovation and knowledge sharing that led to a worldwide movement of ‘extensionsists’ and ‘extension agents,’ that has arguably become the greatest social impact force, both personally and institutionally, perhaps alongside of universities, football (soccer) and major religions, that the world has ever known and experienced.

This is why I believe a discussion now of blockchain as ‘digital extension services’ is particularly ripe for exploration and why the regularly repeated question of whether or not blockchain is an ‘evolution or revolution’ is not currently as important. If blockchain is going to become a ‘revolutionary’ technology in the digital era, an ‘internet of trust,’ then it will require require some kind of individual and social ‘extension’ motif with goals, aims and purposes in mind in order to achieve this.

At the same time it appears crucial, however, to openly reject ‘evolutionary’ approaches to blockchain as if believing that the origin of Bitcoin did not happen as the result of a random and undirected process that was simply a result of external ‘environmental pressures’ (cf. blind variation and selective retention). Rather, Bitcoin and the technology now known as ‘blockchain’ were created intentionally by a pseudonymous programmer and cryptographer in 2008, with the first Bitcoin mined on January 3, 2009.

If Satoshi Nakamoto’s intentional creation is not credited as such, then an invitation to future blockchain chaos without planning or purpose will be the likely result. In short, an ‘evolutionary’ origins story for blockchain falls short of validity and simply makes no logical sense. Instead, more goal-oriented and teleological discussion is needed about where we are now heading through the use of distributed ledgers, which indeed may bring highly transformative social change to people around the world through digital peer-to-peer interactions.

Investment in Revolution

The question of whether or not blockchain is potentially a ‘revolutionary’ technology and what impact it will have on society raises many difficult questions to answer. To some degree it must involve speculative futuristics. The promises of ‘decentralisation’ and the removal of intermediaries (disintermediation) from digital social transactions that happen across borders and nations using the internet has led to what can be called ‘centre-phobia,’ or the fear of centralised institutions of social, economic and political power. Some proponents of blockchain are even calling for ‘leaderless democracy[12],’ which sounds more utopian and radical than what mainstream blockchain builders are aiming for.

The blockchain feature of having a timestamped, immutable record has many implications, including for deterrence of online criminal activity and financial fraud detection[13]. While much of the zeal for Bitcoin in the early years involved illicit use through the Silk Road website involving weapons, drugs, human trafficking and various nefarious schemes, other non-criminal uses of distributed ledger for ‘social impact[14]‘ soon started to arise that pushed the boundaries of what peer-to-peer networking and transacting around the world could enable.

All of these changes require the intentional and ‘signed’ (cf. key signatures) use of blockchain systems, where users must agree to accept the rules and regulations of the ledger community’s ‘Genesis Block’ in order to participate. Again, the language of ‘extension’ based on individual and social choices seems more suitable than outsourcing the conversation to biological or even environmental language.

To enable easily distinguishing ‘non-evolutionary’ change and ‘development’ from ‘evolutionary’ change, we may simply consider the effects of intentionality, purpose and aim[15]. When we explore the directions and trajectories that blockchain DLT is headed, we mean that people are consciously developing and building it and/or purchasing crypto-assets and digital currencies, i.e. they are ‘extending’ the innovation made by Satoshi Nakamoto with new applications.

Rest assured, however, with this new terminology in hand this does not necessarily mean that any one person knows, or even that it can be known exactly for certain, in which direction(s) blockchain is headed, such that a single person, group or institution can ‘control’ it, as Carter rightly identified above. Yet, while most people cautiously say they do not now know and cannot predict where blockchain is headed in the future, those who are actually building blockchains now should properly be given credit for their work and not left out of the conversation as if their plans are irrelevant to the eventual outcome of the technology’s growth.

Indeed, the goals, aims, visions and plans of many blockchain builders and investors will determine the trajectory of blockchain development; they are the ones who are now ‘in control’ of where the technology is headed since Satoshi Nakamoto has disappeared from public[16].

Similarly, the perspective which holds that all change that is gradual, rather than rapid, therefore, according to biological precedent, automatically counts as ‘evolutionary,’ turns out to be both false and unnecessary upon closer investigation. French Nobel prize winner in Medicine, François Jacob suggested that, “Natural selection does not work as an engineer works. It works like a tinkerer — a tinkerer who does not know exactly what he is going to produce but uses whatever he finds around him… to produce some kind of workable object[17].”

Yet with blockchain the ‘human selection[18]‘ or ‘human extension’ of technology is being done by software developers, legal experts and innovation leaders with particular practical goals and business solutions in mind, even if ‘tinkering’ is the method by which the development occurs. The key is that people are actively involved in plotting the trajectory of blockchain growth and application, in contra-distinction with the mere anthropomorphic appearance (design) of biological change over time.

It simply does not make sense, therefore, when speaking about blockchain technology to use the language of a biologist like Dawkins, who suggested based largely upon a reactionary view, that ‘natural selection,’ “has no purpose in mind. It has no mind and no mind’s eye. It does not plan for the future. It has no vision, no foresight, no sight at all. If it can be said to play the role of watchmaker in nature, it is the blind watchmaker.” (1986: 5) Instead, with blockchain, it is our deep sense of purpose, vision, foresight, and planning that will result in new opportunities to apply the technology in potentially beneficial and effective social and cultural, economic and political configurations.

Indeed, the all-too-human sense of vision and deliberate drive, even if the direction was not always entirely clear and involved a kind of groping for solutions towards an unknown future; this is what enabled Satoshi Nakamoto to bring together past innovations, to ideate, code and eventually build a technological, legal framework and community for Bitcoin users in the first place.

To write this off according to a non-inventive theory of biological evolution that has no foresight or personal agency is to unnecessarily reduce and even dangerously dehumanise the conversation about blockchain in a disparaging way. Instead, I believe that aiming to uplift the conversation involving blockchain for humanity’s individual and collective extension and benefit is what the situation now most urgently requires.

What was the problem to which blockchain presented a solution? Was Nakamoto mainly aiming to undermine the power of financial institutions following the USA’s Emergency Economic Stabilization Act of 2008, i.e. the great bailout for banking elites at massive cost to millions of citizens? What purposes need there be other than financial ones to inspire the invention of an immutable public ledger that may serve as the basis for a ‘blockchain revolution’?

A public ledger (cf. triple entry accounting) that eliminates the double spending problem for digital transactions involving money is a massively transformative technology in and of itself. Regardless of what purposes Nakamoto had in mind when designing, creating and developing Bitcoin, we now are faced with what to do with this invention in ways that not only disrupt older systems, but that rather may at the same time creatively uplift human development of people around the world. What seems most urgently needed nowadays is a globally-oriented, socially-responsible digital extension services built upon distributed ledger technologies, using a combination of human, informational and material resources to produce it.


“The extensions of man with their ensuing environments, it’s now fairly clear, are the principal area of manifestation of the evolutionary process[19].” – McLuhan (1968)

“Building is the only truth path. Creation.” … “Bitcoin started because of my ideas. It was my design, and it is my creation.” – Craig Steven Wright (2019)

Given the above survey of uses of both terms ‘evolution’ and ‘revolution’ with respect to blockchain in the available literature, it is clear at least that there is on-going debate between which term is more suitable. My preference is to drop the term ‘evolution’ as unnecessarily ambiguous and imprecise when applied to technology, while cautioning that ateleological language is not particularly helpful or constructive in the conversation about blockchain development.

Likewise, at this early stage of historical growth, we still don’t know what kind of ‘revolution’ blockchain may cause in combination with other emerging digital technologies (IoTs, UAVs, VR/AR, virtual assistants, neural nets, quantum computing, etc.). We may thus look with either some trepidation or tempered optimism at the potential for revolutionary changes with the coming of distributed ledgers, particularly in the way blockchain will impact society, economics, politics, and culture.

In this paper, a brief comparison towards blockchain’s ‘revolutionary’ impact was proposed in the educational extension movement and agricultural extension and advisory services. The worldwide extension movement in agriculture contributed to the so-called ‘Green Revolution[20]‘ of the 1950s and 60s through knowledge sharing and information transfer to farmers who otherwise would not have had access to new seeds, knowledge and farming techniques.

With blockchain as a globally-oriented technology built upon the internet, we are starting to see new opportunities for digital identity provision that opens access to vital resources for those who are currently identity-less, for money transfer across borders (remissions), and for opportunities to bring ‘banking to the unbanked.’ This transformation has the potential to unlock many available human resources that will be able to further develop societies and cultures through savings and investment in peoples’ futures, something now impossible via institutional gridlock, exclusion and information capture.

On the strictly academic level, distributed ledgers may turn out to be the greatest technology created since the ‘social survey’ (or questionnaire) itself with the prospect of gathering big data for multivariate analysis. Now with a partially anonymous (cf. pseudonymous) user platform to protect personal identities from recrimination and ‘outing,’ social scientific research may be able to provide greater safety and security for ethical studies of humanity via digital devices that was simply not available in the past.

Nevertheless, we are still largely in the theoretical stage of blockchain’s coming impact and no mass platform for collecting such linked social data has yet been created where peer-to-peer interactions can produce a cascading global network effect. The question of whether a ‘revolution’ is coming or not due to blockchain DLT is thus for many people one still of sheer fantasy or hopeful speculation waiting for a major consensus-building breakthrough.

The Origins and the Future

Whether or not a person believes Craig Steven Wright was ‘Satoshi Nakamoto’ (perhaps with helpers alongside) or not is beside the point that someone must have been the inventive creator of Bitcoin. It simply didn’t arise on its own without an inventor and creator or without a purpose, aim and plan for its roll-out. To posit an ‘evolutionary origin’ for blockchain DLT thus profoundly misses out on the crucial elements of intentional, planned, purposeful technological change. Instead, looking at blockchain as an ‘extension’ of peoples’ choices places priorities on human values and desires, which are not to be ignored, but rather individually and collectively celebrated.

That said, in closing it is worth noting that a ‘revolution’ would only happen involving blockchains if the technology is not limited in usage to banks, multi-national corporations, and intermediary holders of financial power that collect fees without adding actual value to communities and users. Rent-seeking behaviour and currency speculation indeed has levied a massive cost on human civilisation in terms of widening the inequality gap within and between nations.

Similarly, writes Lawrie, “the Extension Movement … had to battle against the prejudice of those who would prefer university education to remain a privilege for the few.” (2014: 79) An overall struggle for power can and therefore must be expected in attempts to control distributed ledgers via ‘super users’ and centralised databases that sell user information. If the champions of blockchain DLTs are also champions of human freedom and dignity of person, the result may turn out better for a majority, rather than a minority few.

The dangers also adds caution and concern to those who focus on blockchain’s supposed ‘revolutionary’ impact as something necessarily disruptive and even destructive. The rhetoric heats up especially when blockchain is framed as a kind of deterministic, unavoidable and inevitable change driven by forces outside of human control.

Does technology have a ‘mind of its own?’ If not, then who is in control? Who is innovating? Who is guiding, choosing and directing the development of blockchain technology? And are they creating it for their own selfish gains or for the broader aims of society and culture? These questions animate the underlying concerns in this paper that mainly attempted to distinguish between random, unguided and guided, responsible technological change.

While it is true that in some sense the identity of Satoshi Nakamoto does not matter anymore, as the so-called “genie is out of the bottle[21]” now with blockchain. I believe it is nevertheless wrong to suggest that no one is or even should be in control of blockchain development, even though Satoshi Nakamoto disappeared. The growing number of people now building blockchain technologies will create a new horizon in which this technology will impact humanity in the coming years in a profound way. We may therefore watch with interest at the various ways P2P and E2E digital interactions on a global scale will change the course of human history in the near future to come.

In short, blockchain technology is a non-evolutionary or trans-evolutionary phenomenon that is potentially revolutionary for how it will restructure human society and culture based on immutable, timestamped distributed public ledgers. Blockchain as a ‘social machine’ heralds digital extension services and a new era of social change-over-time. Let us be ready and unafraid to face the challenges that this technology brings as it both disrupts, re-creates and unites people in a way that was unimaginable until Satoshi’s blockchain was invented to change the world.

Contact details:


Arner, D.W., J.N. Barberis, R.P. Buckley (2015) “The Evolution of FinTech: A New Post-Crisis Paradigm.” 47 Geo. J. Int’l L. 1271.

Antonopolous, Andreas M. (2017). Mastering Bitcoin Programming the Open Blockchain. 2nd Edition, O’Reily.

Ashley, Michael (2019). “Forget Darwinian Evolution. Humanity May Soon Evolve Itself Through A.I.” Forbes.

Matthew Bardeen and Narciso Cerpa (2015). “Technological Evolution in Society – The Evolution of Mobile Devices.”

Bejan, A., J.D. Charles, and S. Lorente (2014). “The Evolution of Airplanes.¨ Journal of Applied Physics, 116:044901.

Belady, L.A. And M.M. Lehman (1976). “A Model of Large Program Development.” IBM Systems Journal, 15(3): pp. 225-252.

Berg, Chris, Sinclair Davidson, and Jason Potts (2018). “Institutional Discovery and Competition in the Evolution of Blockchain Technology.” SSRN.

Berners-Lee, Tim (2000). Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web. New York: Harper.

Blakstad S., Allen R. (2018). “Ecosystem vs Egosystem and Revolution vs Evolution.” In: FinTech Revolution. Palgrave Macmillan, Cham.

Brooks, Fred P. (1986). “No Silver Bullet — Essence and Accident in Software Engineering.” Proceedings of the IFIP Tenth World Computing Conference: pp. 1069–1076.

Brooks, Fred (1975). The Mythical Man-Month. Addison-Wesley.

Brey, Phillip (2008). ‘Technological Design as an Evolutionary Process.” In Philosophy and Design: From Engineering to Architecture. Eds. P. Vermaas, P. Kroes, A. Light and S. Moore,  Springer.

Buitenhek, Mark (2016). “Understanding and applying Blockchain technology in banking: Evolution or revolution?” Journal of Digital Banking, Volume 1 / Number 2 / AUTUMN/FALL 2016, pp. 111-119 (9).

Campbell, Donald T. (1960). “Blind Variation and Selective Retention in Creative Thought as in other Knowledge Processes.” Psychological Review, 67: pp. 380-400.

Casey, M.J., P. Vigna (2015). “Bitcoin and the Digital-Currency Revolution.” Wall St. J.23.

Chakraborty, Sumit (2018). FinTech: Evolution or Revolution. 1st Edition.

Champagne, Phil (2014). The Book of Satoshi: The Collected Writings of Bitcoin Creator Satoshi Nakamoto. E53 Publishing.

Dawkins, Richard (1986). The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe without Design. Norton & Company.

De Breuck, Frederik (2019). “Next steps in the evolution of blockchain.”

Demirbas, Ugur, Heiko Gewald, Bernhard Moos  (2018). “The Impact of Digital Transformation on Sourcing Strategies in the Financial Services Sector: Evolution or Revolution?”  Twenty-forth Americas Conference on Information Systems, New Orleans.

Dhaliwal, Jagjit (2018). “The Evolution of Blockchain.”

Douthit, Chris (2018) “The Evolution of BlockchainWhere Are We?”

Easley, David, Maureen O’Hara, and Soumya Basu (2017). “From Mining to Markets: The Evolution of Bitcoin Transaction Fees.” SSRN.

ElBahrawy, A., L. Alessandretti, A. Kandler, R. Pastor-Satorras, & A. Baronchelli (2017). “Evolutionary dynamics of the cryptocurrency market.” Royal Society Open Science, 4(11), 170623.

Fenwick, M., W.A. Kaal, EPM Vermeulen (2017). “Legal Education in the Blockchain Revolution.” 20 Vand. J. Ent. & Tech. L. 351.

Gilder, George (2018).  Life after Google: the Fall of Big Data and the Rise of the Blockchain Economy. Gateway Editions.

Harker, Patrick T. (2017). “FinTech: Evolution or Revolution?” Technology, Business and Government Distinguished Lecture Series.

Halaburda, Hanna (2018). Blockchain Revolution Without the Blockchain. Bank of Canada.  

Hedera Hashgraph Team (2018). “The Evolution of Possibilities.”

Hegadekatti, Kartik (2017). “Blockchain Technology – An Instrument of Economic Evolution?” SSRN.

Herraiz, Israel, Daniel Rodriguez, Gregorio Robles, Jesus M. Gonzalez-Barahona (2013). “The Evolution of the Laws of Software Evolution”. ACM Computing Surveys. 46 (2): pp. 1–28.

Hochstein, Mark (2015). “BankThink: Fintech (the Word, That Is) Evolves.”

Kakavand, Hossein, Nicolette Kost De Sevres and Bart Chilton (2017). “The Blockchain Revolution: An Analysis of Regulation and Technology Related to Distributed Ledger Technologies.” SSRN.

Künnapas K. (2016). “From Bitcoin to Smart Contracts: Legal Revolution or Evolution from the Perspective of de lege ferenda?” In: Kerikmäe T., Rull A. (eds) The Future of Law and eTechnologies. Springer, Cham .

Lagarde, Christine (2018). “Winds of Change: The Case for New Digital Currency.”

Lawrie, Alexandra (2014). The Beginnings of University English Extramural Study, 1885– 1910. Palgrave Macmillan.

Lehman, Meir M. (1980). “Programs, Life Cycles, and Laws of Software Evolution”. Proc. IEEE. 68 (9): pp. 1060–1076.

Liu, Stella (2017). “Green Revolution 2.0 aims to boost rural net connectivity.”

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.

Narayanan, Arvind and Jeremy Clark (2017). “Bitcoin’s Academic Pedigree.” Communications of the ACM, 60, 12: pp. 36-45.

Naryanyan, V. (2018). A brief history in the evolution of blockchain technology platforms.”

Nichols, Megan Ray (2018). “Blockchain: The Next Big Disruptor in the Manufacturing Industry.”

Pinna, Andrea and Wiebe Ruttenberg (2016). “Distributed Ledger Technologies in Securities Post-Trading Revolution or Evolution?” ECB Occasional Paper No. 172.

Rauchs, Michel, Andrew Glidden, Brian Gordon, Gina Pieters, Martino Recanatini, François Rostand, Kathryn Vagneur and Bryan Zhang (2018). Distributed Ledger Technology Systems: A Conceptual Framework. Cambridge Centre for Alternative Finance.

Ravikant, Naval (2017). “The Knowledge Project.” The Farnam Street Learning Company.

Rose, C. (2015). “The Evolution Of Digital Currencies: Bitcoin, A Cryptocurrency Causing A Monetary Revolution.” International Business & Economics Research Journal (IBER), 14(4): pp. 617-622.

Sahlstrom, Dennis (2018). “The Future is Here – The Evolution of Blockchain.”

Sandstrom, Gregory (2017). “Anyone Who Thinks Blockchain Technology is Evolving Put Your Hand Up.”

Sandstrom, Gregory (2017a). “Enter Blockchain: The Non-Evolutionary Recovery of Genesis  in Contemporary Discussions of Innovation and Emerging Technologies.”

Sandstrom, Gregory (2017b). “Who Would Live in a Blockchain Society? The Rise of Cryptographically-Enabled Ledger Communities.” Social Epistemology Review and Reply Collective 6, no. 5: pp. 27-41.

Sandstrom, Gregory (2017c). “Evolutionary Epistemology.” Wiley-Blackwell Encyclopedia of Social Theory.

Sandstrom, Gregory (2016). “Trans-Evolutionary Change Even Darwin Would Accept.” Social Epistemology Review and Reply Collective 5, no. 11, 2016: pp. 18-26.

Sandstrom, Gregory (2010). “The Extension of ‘Extension’ OR the ‘Evolution’ of Science and Technology as a Global Phenomenon.” Liberalizing Research in Science and Technology: Studies in Science Policy. Eds. Nadia Asheulova, Binay Kumar Pattnaik, Eduard Kolchinsky, Gregory Sandstrom. St. Petersburg:  Politechnika: pp. 629-655.

Sandstrom, Gregory (2010). “The Problem of Evolution: Natural-Physical or Human Social?” In Charles Darwin and Modern Biology. St. Petersburg: Institute for the History of Science and Technology, Russian Academy of Sciences: pp. 740-748.

Sinrod, Margaret Leigh (2018).  “Still don’t understand the blockchain? This explainer will help.”

Smart, Paul R. (2012). “The Web-Extended Mind.” In Special Issue: Philosophy of the Web, Metaphilosophy, 43, (4): pp. 426-445.

Smart, P.R., & Shadbolt, N.R. (2015). “Social Machines.” In Encyclopedia of Information Science and Technology, Third Edition. IGI Global: pp. 6855-6862.

Staples, M., S. Chen, S. Falamaki, A. Ponomarev, P. Rimba, A.B. Tran, I. Weber, X. Xu, L. Zhu (2017). “Risks and Opportunities for Systems Using Blockchain and Smart Contracts.” Data61 (CSIRO).

Swan, Melanie (2015). Blockchain: Blueprint for a New Economy. Sebastopol: CA: O’Reilly.

Swanson, Burton E., Robert P. Bentz and Andrew J. Sofranko (1997). Improving Agricultural Extension: A Reference Manual. Rome: Food and Agriculture Organisation of the United Nations.

Szabo, Nick (2002). “Measuring Value.”

Szabo, Nick (1996). “Smart Contracts: Building Blocks for Digital Markets.”

Tapscott, Don & Alex (2016). The Blockchain Revolution: How the Technology Behind Bitcoin Is Changing Money, Business, and the World. Portfolio Penguin.

Town, Sam (2018). “Beyond the ICO Part 3: Evolution Versus Revolution.”

Trujillo, Jesus Leal, Stephen Fromhart & Val Srinivas (2017). “Evolution of blockchain technology Insights from the GitHub platform.” Deloitte.

Walport, Mark (2016). “Distributed Ledger Technology: beyond block chain. A report by the UK Government Chief Scientific Adviser.”

Williams, Sam (2002). “A Unified Theory of Software Evolution.” Salon.

Wright, Collin (2018). “The New Evolution Deniers.”

Wright, Craig Steven (2019). “Careful what you wish for…”

Wright, Craig Steven (2019a).


“Alex Tapscott: Blockchain Revolution | Talks at Google” –

“Are Blockchains Alive? Co-evolving with Technology” – Amanda Gutterman (ConsenSys) –

“Block Chain Revolution | Giovanna Fessenden | TEDxBerkshires” –

“Bitcoin and the history of money” – “Let’s take a look at the evolution of money.” –

“Blockchain – evolution or revolution?” –

“Blockchain Evolution & Empowerment” –

“Blockchain Evolution 2” – Reese Jones –

“Blockchain Evolution or Revolution in the Luxembourg Financial Place? – Nicolas Carey

“Blockchain Evolution” –

“Blockchain Evolution” – Complexity Labs –

“Blockchains’ Evolution by natural selection like biology’s genetics” – Reese Jones –

“Blockchain Evolution” –

“Chandler Guo on The Bitcoin & Blockchain Revolution” –

“Cryptos Are The EVOLUTION of Money and Blockchain is the REVOLUTION of Trust! Vlog#18” – Siam Kidd –

“DigiByte Blockchain – The evolution of the Internet & the revolution in the financial systems” – “The revolution has already begun.”

“Don Tapscott – The Blockchain Revolution –

“Evolution of Bitcoin” – Documentary Film –

“Evolution of Blockchain And Its Future Moving Forward In 2018!” –

“Evolution of Blockchain in India:The value of Ownership.” – Mr.Akash Gaurav – TEDxKIITUniversity –

“Evolution of the Blockchain Economy” – Jeremy Gardner – Startup Grind –

“Future Evolution of Blockchain” – Silicon Valley TV –

“Future Thinkers Podcast – a podcast about evolving technology, society and consciousness.

“Genetics of Blockchain Evolution” – Reese Jones –

“Keynote: Blockchain’s Evolution: Digital Assets are getting Physical” – FinTech Worldwide” –

“How the Blockchain revolution will change our lives? | Eddy Travia | TEDxIEMadrid”

“How the Blockchain Revolution Will Decentralize Power and End Corruption | Brian Behlendorf”

“Interview for Bitcoin And Blockchain Evolution Podcast – Sarah Herring – “Evolution – There is a Revolution coming!”

“John McAfee on Infowars: Nothing Can Stop The Blockchain Revolution” –

“Make the blockchain business case: Evolution, not revolution” (only title, not in video) – PWC –

“The blockchain evolution, from services…to smartphones.” – Mingis on Tech –

“The Blockchain Evolution” – Hewlett Packard –

“The Blockchain Evolution” –

“The Blockchain Evolution” – Cambridge House International” –

“The Evolution of Bitcoin – Bill Barhydt – Global Summit 2018 | Singularity” University

“The Evolution of Blockchain and Global Vision (Shanghai)”

“The Evolution Of Blockchain Over The Decades” – With David Birch”

“The Evolution of Blockchain technology” – Amir Assif. Microsoft Israel” –

“The Evolution of Blockchain: How EOS is reinventing blockchain” –

“The Evolution of Blockchain” – Nicola Morris –

“The Evolution of Blockchain” – The State of Digital Money 18′ conference” –

“The Blockchain Revolution – Graham Richter, Accenture” –

“The Blockchain Revolution | Rajesh Dhuddu | TEDxHyderabad” –

“The Blockchain Revolution by Talal Tabaa – ECOH 2018” –

“The Blockchain Revolution Changing the Rules

“The Blockchain Revolution in Business and Finance” –

“The blockchain revolution, the ultimate industry disruptor” –

“The Blockchain Revolution: From Organisations to Organism | Matan Field | TEDxBreda” –




[4] “Being teleological is the second worst thing you can be as a Historian. The worst is being Eurocentric.” – Joel Mokyr

[5] “Biological and Cultural Evolution.” 1984. ICR Monograph Series 20.

[6] Berners-Lee writes of “interconnected groups of people acting as if they shared a larger intuitive brain,” defining social machines on the internet as “processes in which the people do the creative work and the machine does the administration.” (1999) Smart and Shadbolt provide an updated version: “Social Machines are Web-based socio-technical systems in which the human and technological elements play the role of participant machinery with respect to the mechanistic realisation of system level processes.” (2014)

[7] “Extension lectures offered many middle-class women almost their only contact with education beyond the secondary level, and in consequence women came to use the new movement in greater numbers than any other social group, and frequently displayed the greatest personal application.” – Lawrence Goldman (Dons and Workers, 1995: 88)

[8]  A blockchain is “a place [digital ledger] for storing data that is maintained by a network of nodes without anyone in charge.” – Jeremy Clark (2016,

[9]  See Kevin O’Brien’s (2018) “China, Russia, USA in Race to Use Blockchain for Military Operations.” and Salvador Llopsis Sanchez’ “Blockchain Technology in Defence.”

[10] Andrew Braun’s (2018) “Blockchain & Agriculture: A Look at the Issues & Projects Aiming to Solve Them” and “Digging into Blockchain in Agriculture.”

[11]  Zohar Elhanini’s (2018) “How Blockchain Changed The Art World In 2018.”

[12] “Without the need for any central control or mediator blockchains allow for leaderless democracy – a new way of governing human behaviour online through ‘one computer one vote’.”

[13] “Bitcoin is an immutable evidence system, a ledger that stops fraud.” – Craig Steven Wright


[15] “As a result of the new scientific orthodoxy, the origins of organisms and of artifacts are nowadays seen as radically different: blind natural selection versus the purposive, forward-looking, and intelligent activity of designers.” – Phillip Brey (2008)

[16] However, with the noteworthy possibility that Craig Steve Wright was Satoshi Nakamoto, as he is now claiming, as he did in 2016: “I was Satoshi.” (2019)

[17]  “Evolution and Tinkering.” Science, Vol. 196, No. 4295, June 1977: pp. 1161-1166.

[18] This term was used in 1890 by A.R. Wallace, co-discoverer of ‘natural selection’ with Charles Darwin, to distinguish human-made things from natural organisms, after Darwin’s death.

[19] War and Peace in the Global Village. With Quentin Fiore. New York: Bantam, 1968: p. 19.

[20] “The first Green Revolution enabled developing countries to experience large increases in crop production through the use of fertilisers, pesticides and high-yield crop varieties. Between 1960 and 2000, yields for all developing countries rose 208 per cent for wheat, 109 per cent for rice, 157 per cent for maize, 78 per cent for potatoes and 36 per cent for cassava. This success was most felt with rice growers in Asia and lifted many out of poverty. … Capital investments and agricultural extension services are key for farmers to properly adopt new technologies and raise their farms’ productivity. ” – Liu (2017)

[21] As Joseph Lubin of Ethereum and Consensus says, “She’s big, she can’t go back in.” [21]

Author Information: Mara Cristina Salles Correia, University of Brasília,; Tarcisio Zandonade, University of Brasília,

Correia, Mara Cristina Salles and Tarcisio Zandonade. “Information as Recorded Knowledge.” [1] Social Epistemology Review and Reply Collective 4, no. 9 (2015): 13-39.

The PDF of the article gives specific page numbers. Shortlink:


Image credit: Michael D Beckwith, via flickr


Information science is a social science whose domain was established through the study in library science in the mid 20th century. It has adopted fundamental concepts from other scientific areas, especially from cognitive sciences, informatics, computer science, artificial intelligence, linguistics, semantics, communication science, cybernetics, systems theory and social sciences. Recorded knowledge has been building-up since the first written documents appeared at around 3,200 years BCE. The critical period of ‘humanization’ produced the human conscious mind, after which humans created language, allowing for the development of the graphical representation of knowledge, i.e., writing, to perpetuate memory through ‘documents’. Since then it has been possible to identify the accumulation of written records, essential tools of history, in every culture, collected into large repositories, or libraries, administered by the first library professionals. In addition, since the first libraries of the ancient world, librarians created bibliographical control tools with the purpose of selecting, organizing, storing, retrieving and making written records available for society. Library science was institutionalised as ‘library economy’ at the end of the 19th century. Until the mid 20th century, libraries focused mainly on ‘books’ collected into libraries or listed through bibliographies. After the Second World War, this focus was gradually shifted into the ‘content’ of books, which led to the emergence of information science. Since its inception, the object of a science of information was given thousands of definitions, only a few of them explaining the elements of which information is composed, i.e., (a) graphical records of knowledge on physical support; (b) whose content is extracted from written language through reading. This article proposes to expand upon this definition of information applying the Aristotelian concept of matter (graphic records) combined with substantial form (content), so that this combination defines information substance as the object of information science, allowing for the retrieval of meaning by the process of reading.

  Continue Reading…