Archives For modern science

Author Information: Jeff Kochan, University of Konstanz, jwkochan@gmail.com.

Kochan, Jeff. “Decolonising Science in Canada: A Work in Progress.” Social Epistemology Review and Reply Collective 7, no. 11 (2018): 42-47.

The pdf of the article gives specific page numbers. Shortlink: https://wp.me/p1Bfg0-43i

A Mi’kmaw man and woman in ceremonial clothing.
Image by Shawn Harquail via Flickr / Creative Commons

 

This essay is in reply to:

Wills, Bernard (2018). ‘Weak Scientism: The Prosecution Rests.’ Social Epistemology Review & Reply Collective 7(10): 31-36.

In a recent debate about scientism in the SERRC pages, Bernard Wills challenges the alleged ‘ideological innocence’ of scientism by introducing a poignant example from his own teaching experience on the Grenfell Campus of Memorial University, in Corner Brook, Newfoundland (Wills 2018: 33).

Note that Newfoundland, among its many attractions, claims a UNESCO World Heritage site called L’Anse aux Meadows. Dating back about 1000 years, L’Anse aux Meadows is widely agreed to hold archaeological evidence for the earliest encounters between Europeans and North American Indigenous peoples.

Southwest Newfoundland is a part of Mi’kma’ki, the traditional territory of the Mi’kmaq. This territory also includes Nova Scotia, Prince Edward Island, and parts of New Brunswick, Québec, and Maine. Among North America’s Indigenous peoples, the Mi’kmaq can readily claim to have experienced some of the earliest contact with European culture.

Creeping Colonialism in Science

Let us now turn to Wills’s example. A significant number of students on the Grenfell Campus are Mi’kmaq. These students have sensitised Wills to the fact that science has been used by the Canadian state as an instrument for colonial oppression. By cloaking colonialism in the claim that science is a neutral, universal standard by which to judge the validity of all knowledge claims, state scientism systematically undermines the epistemic authority of ancient Mi’kmaq rights and practices.

Wills argues, ‘[t]he fact that Indigenous knowledge traditions are grounded in local knowledge, in traditional lore and in story means that on questions of importance to them Indigenous peoples cannot speak. It means they have to listen to others who “know better” because the propositions they utter have the form of science.’ Hence, Wills concludes that, in the Canadian context, the privileging of science over Indigenous knowledge ‘is viciously exploitative and intended to keep indigenous peoples in a place of dependency and inferiority’ (Wills 2018: 33-4).

There is ample historical and ethnographic evidence available to support Wills’s claims. John Sandlos, for example, has shown how the Canadian state, from the late 19th century to around 1970, used wildlife science as a ‘coercive’ and ‘totalizing influence’ in order to assert administrative control over Indigenous lives and lands in Northern Canada (Sandlos 2007: 241, 242).

Paul Nadasdy, in turn, has argued that more recent attempts by the Canadian state to establish wildlife co-management relationships with Indigenous groups are but ‘subtle extensions of empire, replacing local Aboriginal ways of talking, thinking and acting with those specifically sanctioned by the state’ (Nadasdy 2005: 228). The suspicions of Wills’s Mi’kmaw students are thus well justified by decades of Canadian state colonial practice.

Yet Indigenous peoples in Canada have also pointed out that, while this may be most of the story, it is not the whole story. For example, Wills cites Deborah Simmons in support of his argument that the Canadian state uses science to silence Indigenous voices (Wills 2018: 33n4). Simmons certainly does condemn the colonial use of science in the article Wills cites, but she also writes: ‘I’ve seen moments when there is truly a hunger for new knowledge shared by indigenous people and scientists, and cross-cultural barriers are overcome to discuss research questions and interpret results from the two distinct processes of knowledge production’ (Simmons 2010).

Precious Signs of Hope Amid Conflict

In the haystack of Canada’s ongoing colonial legacy, it can often be very difficult to detect such slivers of co-operation between scientists and Indigenous peoples. For example, after three decades of periodic field work among the James Bay Cree, Harvey Feit still found it difficult to accept Cree claims that they had once enjoyed a long-term, mutually beneficial relationship with the Canadian state in respect of wildlife management in their traditional hunting territories. But when Feit finally went into the archives, he discovered that it was true (Feit 2005: 269; see also the discussion in Kochan 2015: 9-10).

In a workshop titled Research the Indigenous Way, part of the 2009 Northern Governance and Policy Research Conference, held in Yellowknife, Northwest Territories, participants affirmed that ‘Indigenous people have always been engaged in research processes as part of their ethical “responsibility to keep the land alive”’ (McGregor et al. 2010: 102). At the same time, participants also recognised Indigenous peoples’ ‘deep suspicion’ of research as a vehicle for colonial exploitation (McGregor et al. 2010: 118).

Yet, within this conflicted existential space, workshop participants still insisted that there had been, in the last 40 years, many instances of successful collaborative research between Indigenous and non-Indigenous practitioners in the Canadian North. According to one participant, Alestine Andre, these collaborations, although now often overlooked, ‘empowered and instilled a sense of well-being, mental, physical, emotional, spiritual good health in their Elders, youth and community people’ (McGregor et al. 2010: 108).

At the close of the workshop, participants recommended that research not be rejected, but instead indigenised, that is, put into the hands of Indigenous practitioners ‘who bear unique skills for working in the negotiated space that bridges into and from scientific and bureaucratic ways of knowing’ (McGregor et al. 2010: 119). Indigenised research should both assert and strengthen Indigenous rights and self-government.

Furthermore, within this indigenised research context, ‘there is a role for supportive and knowledgeable non-Indigenous researchers, but […] these would be considered “resource people” whose imported research interests and methods are supplementary to the core questions and approach’ (McGregor et al. 2010: 119).

Becoming a non-Indigenous ‘resource person’ in the context of decolonising science can be challenging work, and may offer little professional reward. As American archaeologist, George Nicholas, observes, it ‘requires more stamina and thicker skin than most of us, including myself, are generally comfortable with – and it can even be harmful, whether one is applying for permission to work on tribal lands or seeking academic tenure’ (Nicholas 2004: 32).

Indigenous scholar Michael Marker, at the University of British Columbia, has likewise suggested that such research collaborations require patience: in short, ‘don’t rush!’ (cited by Wylie 2018). Carly Dokis and Benjamin Kelly, both of whom study Indigenous water-management practices in Northern Ontario, also emphasise the importance of listening, of ‘letting go of your own timetable and relinquishing control of your project’ (Dokis & Kelly 2014: 2). Together with community-based researchers, Dokis and Kelly are exploring new research methodologies, above all the use of ‘storycircles’ (https://faculty.nipissingu.ca/carlyd/research/).

Such research methods are also being developed elsewhere in Canada. The 2009 Research the Indigenous Way workshop, mentioned above, was structured as a ‘sharing circle,’ a format that, according to the workshop facilitators, ‘reflect[ed] the research paradigm being talked about’ (McGregor et al. 2010: 101). Similarly, the 13th North American Caribou Workshop a year later, in Winnipeg, Manitoba, included an ‘Aboriginal talking circle,’ in which experiences and ideas about caribou research were shared over the course of one and a half days. The ‘relaxed pace’ of the talking circle ‘allowed for a gradual process of relationship-building among the broad spectrum of Aboriginal nations, while providing a scoping of key issues in caribou research and stewardship’ (Simmons et al. 2012: 18).

Overcoming a Rational Suspicion

One observation shared by many participants in the caribou talking circle was the absence of Indigenous youth in scientific discussions. According to the facilitators, an important lesson learned from the workshop was that youth need to be part of present and future caribou research in order for Indigenous knowledge to survive (Simmons et al. 2012: 19).

This problem spans the country and all scientific fields. As Indigenous science specialist Leroy Little Bear notes, the Canadian Royal Commission on Aboriginal Peoples (1991-1996) ‘found consistent criticism among Aboriginal people in the lack of curricula in schools that were complimentary to Aboriginal peoples’ (Little Bear 2009: 17).

This returns us to Wills’s Mi’kmaw students at the Grenfell Campus in Corner Brook. A crucial element in decolonising scientific research in Canada is the encouragement of Indigenous youth interest in scientific ways of knowing nature. Wills’s observation that Mi’kmaw students harbour a keen suspicion of science as an instrument of colonial oppression points up a major obstacle to this community process. Under present circumstances, Indigenous students are more likely to drop out of, rather than to tune into, the science curricula being taught at their schools and universities.

Mi’kmaw educators and scholars are acutely aware of this problem, and they have worked assiduously to overcome it. In the 1990s, a grass-roots initiative between members of the Mi’kmaw Eskasoni First Nation and a handful of scientists at nearby Cape Breton University (CBU), in Nova Scotia, began to develop and promote a new ‘Integrative Science’ programme for CBU’s syllabus. Their goal was to reverse the almost complete absence of Indigenous students in CBU’s science-based courses by including Mi’kmaw and other Indigenous knowledges alongside mainstream science within the CBU curriculum (Bartlett et al. 2012: 333; see also Hatcher et al. 2009).

In Fall Term 2001, Integrative Science (in Mi’kmaw, Toqwa’tu’kl Kjijitaqnn, or ‘bringing our knowledges together’) became an accredited university degree programme within CBU’s already established 4-year Bachelor of Science Community Studies (BScCS) degree (see: http://www.integrativescience.ca). In 2008, however, the suite of courses around which the programme had been built was disarticulated from both the BScSC and the Integrative Science concentration, and was instead offered within ‘access programming’ for Indigenous students expressing interest in a Bachelor of Arts degree. The content of the courses was also shifted to mainstream science (Bartlett et al. 2012: 333).

Throughout its 7-year existence, the Integrative Science academic programme faced controversy within CBU; it was never assigned a formal home department or budget (Bartlett et al. 2012: 333). Nevertheless, the programme succeeded in meeting its original goal. Over those 7 years, 27 Mi’kmaw students with some programme affiliation graduated with a science or science-related degree, 13 of them with a BScSC concentration in Integrative Science.

In 2012, most of these 13 graduates held key service positions within their home communities (e.g., school principal, research scientist or assistant, job coach, natural resource manager, nurse, teacher). These numbers compare favourably with the fewer than 5 Indigenous students who graduated with a science or science-related degree, unaffiliated with Integrative Science, both before and during the life of the programme (Bartlett et al. 2012: 334). All told, up to 2007, about 100 Mi’kmaw students had participated in first-year Integrative Science courses at CBU (Bartlett et al. 2012: 334).

From its inception, Integrative Science operated under an axe, facing, among other things, chronic ‘inconsistencies and insufficiencies at the administrative, faculty, budgetary and recruitment levels’ (Bartlett 2012: 38). One could lament its demise as yet one more example of the colonialism that Wills has brought to our attention in respect of the Grenfell Campus in Corner Brook. Yet it is important to note that the culprit here was not science, as such, but a technocratic – perhaps scientistic – university bureaucracy. In any case, it seems inadequate to chalk up the travails of Integrative Science to an indiscriminate search for administrative ‘efficiencies’ when the overall nation-state context was and is, in my opinion, a discriminatory one.

When Seeds Are Planted, Change Can Come

But this is not the note on which I would like to conclude. To repeat, up to 2007, about 100 Mi’kmaw students had participated in first-year Integrative Science courses. That is about 100 Mi’kmaw students who are, presumably, less likely to hold the firmly negative attitude towards science that Wills has witnessed among his own Mi’kmaw students in Newfoundland.

As I wrote above, in the haystack of Canada’s ongoing colonial legacy, it can be very difficult to detect those rare slivers of co-operation between scientists and Indigenous peoples on which I have here tried to shine a light. If this light were allowed to go out, a sense of hopelessness could follow, and then an allegedly hard border between scientific and Indigenous knowledges may suddenly spring up and appear inevitable, if also, for some, lamentable.

Let me end with the words of Albert Marshall, who, at least up to 2012, was the designated voice on environmental matters for Mi’kmaw Elders in Unama’ki (Cape Breton), as well as a member of the Moose Clan. Marshall was a key founder and constant shepherd of CBU’s Integrative Science degree programme. One last time: some 100 Mi’kmaw students participated in that programme during its brief life. Paraphrased by his CBU collaborator, Marilyn Iwama, Elder Marshall had this to say:

Every year, the ash tree drops its seeds on the ground. Sometimes those seeds do not germinate for two, three or even four cycles of seasons. If the conditions are not right, the seeds will not germinate. […] [Y]ou have to be content to plant seeds and wait for them to germinate. You have to wait out the period of dormancy. Which we shouldn’t confuse with death. We should trust this process. (Bartlett et al. 2015: 289)

Contact details: jwkochan@gmail.com

References

Bartlett, Cheryl (2012). ‘The Gift of Multiple Perspectives in Scholarship.’ University Affairs / Affaires universitaires 53(2): 38.

Bartlett, Cheryl, Murdena Marshall, Albert Marshall and Marilyn Iwama (2015). ‘Integrative Science and Two-Eyed Seeing: Enriching the Discussion Framework for Healthy Communities.’ In Lars K. Hallstrom, Nicholas Guehlstorf and Margot Parkes (eds), Ecosystems, Society and Health: Pathways through Diversity, Convergence and Integration (Montréal: McGill-Queens University Press), pp. 280-326.

Bartlett, Cheryl, Murdena Marshall and Albert Marshall (2012). ‘Two-Eyed Seeing and Other Lessons Learned within a Co-Learning Journey of Bringing Together Indigenous and Mainstream Knowledges and Ways of Knowing.’ Journal of Environmental Studies and Sciences 2: 331-340.

Dokis, Carly and Benjamin Kelly (2014). ‘Learning to Listen: Reflections on Fieldwork in First Nation Communities in Canada.’ Canadian Association of Research Ethics Boards Pre and Post (Sept): 2-3.

Feit, Harvey A. (2005). ‘Re-Cognizing Co-Management as Co-Governance: Visions and Histories of Conservation at James Bay.’ Anthropologica 47: 267-288.

Hatcher, Annamarie, Cheryl Bartlett, Albert Marshall and Murdena Marshall (2009). ‘Two-Eyed Seeing in the Classroom Environment: Concepts, Approaches, and Challenges.’ Canadian Journal of Science, Mathematics and Technology Education 9(3): 141-153.

Kochan, Jeff (2015). ‘Objective Styles in Northern Field Science.’ Studies in the History and Philosophy of Science 52: 1-12. https://doi.org/10.1016/j.shpsa.2015.04.001

Little Bear, Leroy (2009). Naturalizing Indigenous Knowledge, Synthesis Paper. University of Saskatchewan, Aboriginal Education Research Centre, Saskatoon, Sask. and First Nations and Adult Higher Education Consortium, Calgary, Alta. https://www.afn.ca/uploads/files/education/21._2009_july_ccl-alkc_leroy_littlebear_naturalizing_indigenous_knowledge-report.pdf  [Accessed 05 November 2018]

McGregor, Deborah, Walter Bayha & Deborah Simmons (2010). ‘“Our Responsibility to Keep the Land Alive”: Voices of Northern Indigenous Researchers.’ Pimatisiwin: A Journal of Aboriginal and Indigenous Community Health 8(1): 101-123.

Nadasdy, Paul (2005). ‘The Anti-Politics of TEK: The Institutionalization of Co-Management Discourse and Practice.’ Anthropologica 47: 215-232.

Nicholas, George (2004). ‘What Do I Really Want from a Relationship with Native Americans?’ The SAA Archaeological Record (May): 29-33.

Sandlos, John (2007). Hunters at the Margin: Native People and Wildlife Conservation in the Northwest Territories (Vancouver: UBC Press).

Simmons, Deborah (2010). ‘Residual Stalinism.’ Upping the Anti #11. http://uppingtheanti.org/journal/article/11-residual-stalinism [Accessed 01 November 2018]

Simmons, Deborah, Walter Bayha, Danny Beaulieu, Daniel Gladu & Micheline Manseau (2012). ‘Aboriginal Talking Circle: Aboriginal Perspectives on Caribou Conservation (13th North American Caribou Workshop).’ Rangifer, Special Issue #20: 17-19.

Wills, Bernard (2018). ‘Weak Scientism: The Prosecution Rests.’ Social Epistemology Review & Reply Collective 7(10): 31-36.

Wylie, Alison (2018). ‘Witnessing and Translating: The Indigenous/Science Project.’ Keynote address at the workshop Philosophy, Archaeology and Community Perspectives: Finding New Ground, University of Konstanz, 22 October 2018.

 

Author Information: Bernard Wills, Sir Wilfred Grenfell College (Memorial University), bwills@grenfell.mun.ca.

Wills, Bernard. “Weak Scientism: The Prosecution Rests.” Social Epistemology Review and Reply Collective 7, no. 10 (2018): 31-36.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-41T

Whoever has provoked men to rage against him has always gained a party in his favour too

Image by Vetustense Photorogue via Flickr / Creative Commons

 

On a lazy afternoon there is nothing like another defense of Weak Scientism to get the juices flowing. This one “Why Scientific Knowledge is Still the Best” is quite the specimen. It includes, among other delights, an attempt to humble my perceived pride based on a comparison between myself and my wonderful colleague Dr. Svetlana Barkanova. (Mizrahi, 2018c, 20)

Here I must concede defeat. I don’t hold a candle to the esteemed Dr. Barkanova and would never claim to be her equal. Plus, I need no metrics to convince me of this. I am well aware of her overall excellence as she is an acquaintance of mine. However, this petty display overshoots its mark. All I said was that journals have, in fact, published things (by me) Mizrahi explicitly claimed no journal would publish (2018b, 46) and, frankly, I think I have established that point with any objective reader. I am certainly not bragging or claiming I have some rock star status as a scholar. Let’s proceed then to address the specific arguments he offers in his essay.

Material Causes Behind Intellectual Appearances

I will begin with quantity. This is a point he claims I overemphasize though at the same time he claims it is a crucial component of his own argument. (2018c,19) At any rate, he goes on yet another tangent about the superior quantity and impact of scientific research. To this I respond again, so what? It is no doubt true that more research and more ‘impactful’ research is produced in the sciences but why is this so?

To quote Bill Clinton, “It’s the economy stupid”. Science serves the interests of corporations and the military in ways that the humanities do not and so more money gets directed to the sciences. Since this is the case more scientific research is produced overall.

Now one could make an argument that this speaks to an overall greater utility for the sciences as opposed to other domains, but this is not the argument Mizrahi makes. Rather he asserts raw quantity itself as a feature that makes for the superiority of science. In both my replies I explained the problem with this and in neither of his replies has Mizrahi rebutted my points.

I pointed out a. that commercials are not superior to great artworks even though their number and impact is greater and b. Shakespeare scholarship would not be superior to physics if it simply happened that there were more of it. Mizrahi’s response to this is to complain about the word ‘odd’ (Mizrahi, 19) as if I intended it as a gratuitous personal insult. Actually though, I intended only to imply that his position seemed odd. It still seems odd to me to claim that if Shakespeare scholars suddenly put out a tremendous burst of articles (and pulled into the lead in the great race to produce more and more research) then that would somehow throw particle physics in the shade.

But, if Mizrahi wants to accept that conclusion then he is certainly welcome to it. If he wants to say that weak scientism is only contingently true and that it is only contingently the case that the sciences happen currently to produce more impactful research (for whatever reason), then he has done only what he all too often does; won a debating point by reducing his own thesis to a truism, here, that more =more. (Mizrahi, 19) At any rate, the frustrating thing here is that while Mizrahi asserts again and again the quantitative superiority of science he never condescends to explain why quantity is a valid metric in the first place, he asserts the fact without explaining why I or anyone else should regard that fact as significant.[1]

An Unanswered Question: Recursivity and Science

And, since Mizrahi is obviously sensitive on the point, let me say that calling an argument a sophism is merely an objective description not a personal insult as Mizrahi seems to think. (Mizrahi, 21) Mizrahi still does not recognize the fallacy, perhaps a kinder, better word than sophism (mea culpa), he committed in his reply to my point concerning recursive knowledge. Let me try again. My point was simple. Any argument founded on the claimed quantitative superiority of science founders on the fact that recursive processes, any recursive processes, can produce an infinity of true propositions.

In response to this Mizrahi said that this is not a problem for scientism for we can reflect recursively on scientific propositions in the same manner. To this I responded by saying that this was true but irrelevant as this had nothing whatsoever to do with whether a proposition was scientific or not. Nor does his account of scientific explanation include reflexivity as a source of knowledge. Reflecting recursively on a scientific proposition is not the same as thinking scientifically.  His response his fallacious because it conflates two distinct processes.

This is why it does not matter in the least whether two people, a scientist or non-scientist, can produce an equal amount of knowledge by performing recursive acts in parallel. Neither are doing science. This perfectly obvious point is something Mizrahi claims he addresses in his replies to Brown (Mizrahi, 21) yet my examination of the passages he cites leaves me baffled for nothing in them touches remotely on the question of recursivity or explains how reflecting recursively on a scientific proposition is equivalent to uttering a scientific proposition as a scientist.

Since Mizrahi does not intend to reply any further I suppose I will just have to scratch my head on this one and bewail my own lack of native wit. Plus, as Mizrahi seems to set great store by citations and references even in informal spaces like a review and reply collective it is a little jarring to see HIS not quite panning out (more on this below however).[2]

Systems and Ideologies

Why does Dr. Mizrahi still think I am calling him a racist when I intended to speak only in terms of systemic and not personal racism (Mizrahi, 21-22)?   In a systemic and so intersectional context, non-white identity does not mean one cannot occupy a place of privilege. He still does not see the difference between an ad hominem attack and an ideological critique of scientism. (Mizrahi, 23) Lorraine Code and Helen Longino, among others, have explained how standard accounts of scientific method have (WITTINGLY OR NOT!!) excluded women as knowers and Mizrahi can consult their works if he is interested.[3]  He may also consult Edward Said on how pretensions to scientific ‘objectivity’ underwrite colonialism.

I, however, will use a different example, one closer to my own interests and experience. In the institution in which I teach a significant portion of the students are of indigenous Miq’maw heritage. They are, by and large, NOT interested in hearing that their elders convey a secondary and qualitatively inferior kind of knowledge when compared to western scientists. Now, you could say that this is simple perversity on their part; they should ‘man up’ and accept the gospel of weak scientism! Things are not however so simple.

It is idle to claim that the experience of colonial oppression is irrelevant because science is universal, objective and politically neutral. It is idle to claim that the elevation of scientific procedures to qualitative superiority has no social and political ramifications for those whose knowledge forms are thereby granted second class status. This is because the question of scientism is bound up with the question of authority.

The fact that Indigenous knowledge traditions are grounded in local knowledge, in traditional lore and in story means that on questions of importance to them indigenous peoples cannot speak. It means they have to listen to others who ‘know better’ because the propositions they utter have the form of science.[4]

Thus, whether intended or not, the elevation of scientific knowledge to superior status over indigenous knowledge elevates white settlers to authority over indigenous people and justifies the theft of their land and even of their children. Worse, indigenous people can see for themselves (because they are not blind) that this privileging of settler knowledge over their own is not benign. It is viciously exploitative and intended to keep indigenous peoples in a place of dependence and inferiority. Thus, Mizrahi’s facile assumption that scientism is ideologically innocent will not stand even cursory examination.

Partiality of Knowledge and the Limits of Learning

When I say that Mizrahi’s position is self-interested I am again simply pointing out a fact. If I were to write a paper arguing that the humanities are qualitatively superior to the sciences, deserved more funding than the sciences and that the hermeneutical practices of the humanities should be adopted by the sciences would Mizrahi not wonder if I was, in fact, being a little bit partial? Of course he would.

I, though, am not making that kind of argument, he is. I am not suggesting anyone is inferior to anyone; he is and as such I think it is perfectly legitimate to ask whether his position is tainted with bias. This is so especially as he has no much to say about the lack of ‘good faith’ in others.

On now to our unexpectedly long-lived example of Joyce scholars. Here I must thank Mizrahi for proving my point for me. Unaware that he is shooting his own argument in the foot he takes great pains to distinguish simplicity in scientific explanation from simplicity as an aesthetic quality.[5] He also distinguishes ‘accommodation’ (which the Joyce scholar seeks) from ‘novel prediction’ (which the scientist seeks). (Mizrahi, 25) It is indeed the case, as I myself asserted, that explanation in the humanities and in the sciences are related analogically not univocally. Terms from one domain do not immediately transfer directly to the other.

This is a perfect illustration of why scientific explanation is not the same as literary explanation. Simplicity is a desideratum for both forms of explanation but there is no answer to the question of whether general relativity is simpler than reader response theory for the obvious reason that different disciplines will parse the notion of simplicity differently.

But if this is so I ask again what makes a scientific theory qualitatively better than a critical reading of Joyce when they do not employ commensurate standards and have such fundamentally different aims? I ask again, what could ‘better’ possibly mean in this context? In what sense is a scientific theory simpler than a Joyce commentary if on Mizrahi’s own admission we are not dealing with univocal standards or senses of simplicity? In what sense is a scientific theory more coherent if we are not using ‘coherence’ in the same way in both domains?

Further I asked and ask again why the Joyce scholar even needs to make a novel prediction? Why is it a problem for his discipline if he does not use things he does not need? Further, Mizrahi resorts yet again to the canard that I am accusing him of saying the Joyce scholar does not produce knowledge as if this was even an answer to my question. (Mizrahi, 26)

Next, Scriabin. I think the best description of what my daughter did with the Prometheus chord is that she reverse engineered it. She worked backward from it to tell a story about how it came to be. Obviously this did not require any novel prediction about future Prometheus chords by future Scriabins. There is one Prometheus chord and it already exists. Further, the process by which it was created occurred once in the past.

Thus we are constructing an explanatory story about the past concerning a singular object not formulating a general law or making a testable prediction. This kind of story is used in all kinds of contexts. It is used here in music theory. It is used in those sciences concerned with past events. It is used by law enforcement to reconstruct a crime. Now, even if by some feat of prestidigitation one could contort such explanatory stories into the form of testable predictions this would be an after the fact rationalization not description of how actual people reason.

A World of Citations

Thus, let me emphasize once again that testability does not make science superior to on non-science for the simple reason that non-science does not typically need tests such as Mizrahi describes. Or, to put it another way testing is not employed in the same way in science and non-science so that if one says that, in some sense, the Joyce scholar ‘tests’ his ideas against the text one is speaking analogically not univocally as I attempted to point out in my previous reply. (Wills, 2018b, 38) Thus, Mizrahi’s claim about testability (Mizrahi, 28) is, yet again, beside the point.[6]

Now I turn to the minor objections. Dr. Mizrahi is upset that I have I have not cited the extensive literature on scientism. (Mizrahi, 18) Well Mizrahi has professed to show that science is superior to things like historiography and literary criticism even though he himself does not cite anything from those fields and shows no familiarity with what goes on in them.

Two can play at the rhetoric of citation and it is Mizrahi who claims that scientific procedures are better than non-scientific ones without making any direct comparison with the latter except for his cherished bugbear ‘armchair philosophy’. To return to the question of privilege, Mizrahi seems to assume that he is owed a deference he does not need to grant to others. As Latour says, citation is not accidental but essential to the rhetoric of an academic paper. (Latour; 1987, 30-62) Mizrahi’s use of the rhetoric of citation conveys the message that that his side has an epistemic privilege the other side does not: they are obliged to engage his literature but he is not obliged to engage theirs.

Again, Mizrahi accuses me of Eurocentric bias in citing Augustine and Aristotle (Mizrahi, 23) yet a glance at his own references does not reveal ANY citations from Shankara, Ashvaghosa, al Ghazzali, al Farabi, Ibn Sina, Ibn Rushd, Lao Tzu, Kung Fu Tzu, or any other thinker outside the western tradition. Miizrahi’s own citation list betrays the very story he is trying to tell about mine!  Finally, in a somewhat involved passage he responds to the charge that he vacillates between Weak and Strong Scientism by citing the full text of a passage from one of his replies to Brown. (Mizrahi, 24) I don’t why he does this because his words say the exact same thing even when put in this larger context.

He reports that certain philosophers and scientists think of knowledge as “the scholarly work or research produced in scientific fields of study studies, as opposed to non-scientific study.” He then states, directly, that he follows this view. (Mizrahi, 24) This does indeed look like vacillation between weak and strong scientism.

However, I will not hammer him on one passage for what might, after all, be an unintentional slip or loose phrasing. If he says his position is weak scientism and weak scientism only then I take him at his word.

Conclusion

I will reiterate again the one basic reason why I think weak scientism is unconvincing and that is that it seems to be an exercise in bare arithmetic. Is there more scientific research than non-scientific? Well, more is better! Does science have 4 of the features of good explanation and history only 3? Science wins! This purely arithmetic procedure completely ignores the contexts in which different scholars work and how they reach their conclusions.  I conclude by saying what I said in my first reply: that Mizrahi’s Weak Scientism is the mountain that gave birth to the proverbial mouse.

Contact details: bwills@grenfell.mun.ca

References

Bohannon, John. “Hate Journal Impact Factors? New Study Gives You One More Reason.” Science Magazine. 6 July 2016. Retrieved from: http://www.sciencemag.org/news/2016/07/hate-journal-impact-factors-new-study-gives-you-one-more-reason.

Mizrahi, Moti. “What’s So Bad About Scientism?” Social Epistemology 31, no. 4 (2017): 351-367.

Mizrahi, Moti. “Weak Scientism Defended Once More.” Social Epistemology Review and Reply Collective 7, no. 6 (2018): 41-50.

Van Wesel, Maarten; Sally Wyatt, and Jeroen ten Haaf. “What A Difference a Colon Makes: How Superficial Factors Influence Subsequent Citation.” Scientometrics 98, no. 3 (2014): 1601-1615.

Wills, Bernard. “On the Limits of Any Scientism.” Social Epistemology Review and Reply Collective 7, no. 7 (2018): 34-39.

Wills, Bernard. “Why Mizrahi Needs to Replace Weak Scientism With an Even Weaker Scientism.” Social Epistemology Review and Reply Collective 7, no. 5 (2018): 18-24.

[1] Mizrahi is not going to like this but some have questioned whether impact ratings and other quantitative metrics have the significance sometimes claimed for them. See Callaway, as well as Van Wesel, Wyatt,  ten Haaff, and Bohanon. Indeed, Mizrahi seems to have internalized the standards of the university’s corporate masters (with their spurious emphasis on external metrics) to an uncritical and disturbing degree.

[2] Is Mizrahi claiming in these passages that ‘scientific knowledge’ is any knowledge that happens to be produced by a scientist as ‘practitioner’ in a field (Mizrahi 21) whether accidental to her practice or not? If so, he has yet again defended his thesis at the cost of making it trivial.

[3] He may begin with the Stanford Encyclopedia of Philosophy if he likes.

[4]  See D. Simmonds on this point (addressing an anti-indigenous activist notorious in Canada): “My particular interest here is the way in which science has been reified by Widdowson and Howard and used to legitimate state decision-making on behalf of oppressed peoples. Science is counterposed to indigenous traditional knowledge, which by way of a children’s parable (The Emperor’s New Clothes) is denounced as mere superstition in the service of a corrupt “aboriginal industry.” The state is called upon to harness scientific rationalism in the old colonial interest of “civilizing the savages.” In the words of Widdowson and Howard, “It is not clear how the remnants of Neolithic culture that are inhibiting this development can be addressed without intensive government planning and intervention” (252).

[5] Simplicity as I use it here does not refer to ‘simple language’ but to the economy of a work’s design. I admit though that I should have distinguished between two kinds of simplicity here. The simplicity of the work itself and the simplicity of the critic’s exposition of the work which of course formally differ. It is the latter case that more closely resembles the simplicity of a scientific theory though if Mizrahi wants to deny they are identical that is entirely to my own purpose for I deny this as well.

[6] This speaks to the overall banality of Mizrahi’s thesis. He tells us that the best explanation is one “explains the most, leaves out the least, is consistent with background knowledge, is the least complicated, and yields independently testable predictions.” (Mizrahi, 28) He then adds “Wills seems to grant that “unity, simplicity and coherence are good making properties of explanations, but not testability. But why not testability?”. (Mizrahi, 28) Well I have said many times why not. Testability as Mizrahi defines it is not relevant to all inquiries. It is not even relevant to all scientific inquiries. ‘Testing’ can take different forms that resemble each other analogically not univocally. I don’t know how many different ways I can say this: the test of a thesis on metaphysics is elenchic. The test of a thesis about Joyce is a close examination of his texts. The test of an archeological claim is the examination of artefacts. Mizrahi’s entire argument boils down to the claim that science beats non-science 4 to 3! Yet clearly Mizrahi has tilted the field by asking non-science to conform to a standard external to it and applied arbitrarily. Unity, coherence, testability and so on are resemblance terms that cash out differently in different inquiries.

Author Information: Priyadarshini Vijaisri, Centre for the Study of Developing Societies, vijaisri@csds.in.

Vijaisri, Priyadarshini. “The Turn of Postscript Narratives.” Social Epistemology Review and Reply Collective 7, no. 10. (2018): 22-27.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-41H

Image by Ian D. Keating via Flickr / Creative Commons

 

Recalcitrant narratives are ever relegated to the status of dispensable appendages of dominant ideological and epistemic regimes. Vaditya’s paper captures the turn of such postscript narratives’ epistemic concerns that are gaining critical significance in African, Latin American and Asian countries, emerging from intellectual and sociopolitical movements within and outside the Western context.

The driving force being the inadequacy of Eurocentric philosophical and epistemology to engage with contra Western cosmologies and the critical recognition that epistemology is no pure science but mediated by ideologies, shaped by historical factors and undergird by institutionalized epistemic suppression and entrenched in power. Such turn fundamentally foregrounds fidelity to ‘fact’ and universe of study rather than acquiesce to epistemic mimesis and has immense potential to bring in critical reflexivity into newer disciplines like exclusion and discrimination created precisely due to the failure of traditional disciplines to deal with issues concerning the marginalized.

Prior to making some very preliminary points to think about future directions in exploration of these issues would require recognizing problems dominant epistemic practices pose, especially in thinking about marginality in the Indian context. Proposed here is a promising mode of enquiry to disentangle the over-determined idea of the oppressed, i.e., the aesthetic frame.

An Essence of Oppression

It is increasingly recognized that the predominance of western epistemology based on dualism, certitude, and mechanistic conception of the universe is culmination of negation of contra episteme, worldviews and technologies. Its methodological and ideological epistemic filters occlude range of ideas, experiences and processes from its purview that can barely pass through scientific rationalist sieve or appear within a specific form; power should appear in the political, reason must be untainted by emotion, fact must correspond to the principle of bivalence, and true belief could be certified as knowledge if it arrived in a particular mode, any non-rational detour could consign it to false knowledge – deformed episteme, methodless technologies, illogical mythical, irrational sensorial etc.

Thus, the simmering discontent in non-western societies, especially its marginalized collectivities, against a soliloquy of the western rational self which entitles itself as arbitration of true knowledge; and whose provenance of authority is expanded and reinforced by its apologists outside itself by virtue of institutionalization of epistemic authority in the image of the western ‘form’. Such that the West is the transcendental form, and replication being impossibility, the rest are at best ‘copies’ or duplicitous entities whose trajectory is deeply bound to the center.

For the diverse ideologies, grounded in positivism and enlightenment philosophy, the non-Western subjects (especially the marginalized amongst them) are the feral boys, who have accidentally strayed into civilization and ought step into universal history to reclaim humanness. Such modernist discourses riddled with a priori conceptions have impoverished the oppressed and resulted in mystification and entrenched impertinence towards other cognitive modes has caused damage both in representations of and self-representations by the non-west/marginalized on the validity and relevance of their forms of knowing, and technologies.

The crisis in Marxist politics and ideological framework, despite its brief revolutionary spells and significant role in generating radical consciousness in few regions, is too evident despite its entrenchment in the academia. While it has rendered native categories and non-western world as regressive deviance the crisis is reflected in politics too, with exit of oppressed from the Marxist bands, paradoxically due to its own convoluted caste bias and negative valuation of their worldviews.

Inversely, the Subaltern subject is a peculiar species whose appearance and consciousness in finitude nature of appearances/traces is at best mediated, its very essence or ephemeral ontology simply lost in the many layers of obfuscating consciousness; an ontology of the disembodied subject. Thus, the Freirean pedagogic vision was in India at best an inadvertent idyllic where the epistemic base for liberation couldn’t take off, given the many ‘lacks’ in the subject/cognitive agent and distorted worldview and materiality. It is against this history of many interstices in cartographies of repression that B. Sousas Santos’s subversive stance resonates and foregrounds break from the epistemic center as a necessary condition for emancipation.

Diversity and Homogeneity

Thus, standpoint perspectives’ critique of positivism marks a fundamental shift making legible/accountable cognitive agency and diversification and revitalization of discursive space. Positivist epistemology’s conception of scientism and universalism (unadulterated by particularities) is consequence of homogenization, which allows for transposition of singular particularity (of the West) as the universal. Scientific method by implication is premised on the presupposition that truths and representations are products of cognitive process free from cultural and ideological bias.

Thus, the conception of the knower as outside the world of enquiry by implication reinforces a positivist common sense, that errors/distortions are solely a consequence of method, absolving the epistemic agency (complicity/accountability) of the knower, precluding recognition of the nature of relation between epistemology and worldview. While, epistemology originates in the need for exposition and justification of ontological and metaphysical truth claims. As such it creates discursive space both within particular philosophical tradition and outside it for debate and justification of its claims and thus epistemology is a collective dialogical process and open to critique and revision.

Thus, within Indian philosophical tradition deeply antithetical ideas (eg., multiplicity of standpoints on truth or ideas of self/selves/non-self) could be disputed/conceded as a consequence of epistemic plurality and debate (as exemplified in the theory of sources of knowledge).

Worldviews/structures are founded on cultural substratum with their own rendering of the ontology of ideas/mental artifacts- i.e., the cognitive, unconscious/conscious and experiential states by which axiomatic truths are arrived at from the seamless flows between intuition, reason, emotion etc. Such ontology is complexly interwoven with the distinctive conceptions of self and effect the ways in which the knower is defined in relation to the objects of knowledge or the phenomenal world. Application of a mechanistic worldview or historical materialism is incapable of engaging with entirely different universalisms opposed to it.

Also, while dominant codified systems offer coherent theories in grasping the essence of ideas, understanding oral tradition is beset with problems over form and validity of knowledge. In speech traditions codified text (of art, technology or knowledge practices) where knowledge and skills are transmitted orally by collectivities textualization marks a crisis in a culture. Text at best is instrumental for purposes of legible affinity or entitlements rarely a referent for practice or validation of epistemic claims.[1]. Failure to appreciate such epistemic practices have resulted in repression of technologies and cognitive systems of the marginalized as invalid forms of knowledge.

Genuinely Overcoming Domination

This double bind of falsified traditional representations and positivist accounts have led to creative explosion of other representative forms that enable more critical introspection as in literature, fiction and the autobiographical. Dominant ‘disciplinary matrix’ overlooks ‘crisis’ as a dissoluble diversion. Such politics of knowledge fetters the marginalized in a double bind; tradition has its own pernicious facets while modernity, (its antidote to internal repression and non-recognition), and its evocation serve as a justification of the credibility of such episteme and politics.

Struggles of emancipation find legitimacy within a specific mode, i.e., through eliciting proof of their abomination-the prototypical ideal of the oppressed, and irreverence to oppressive tradition. This entails a conscious repression of histories and traditional forms of cultural critique, grounded in a logic and worldview that is in contradiction with modern values. It is within this contradictory pull of modern/negation of tradition and pathos and pre-modern/positive self-affirmation that the consciousness of the oppressed wrestles given the distortion of these spaces with the privileging of textual and singular dominant historical and cultural representations. Abandoning such discourses constricts routes to retrace the lost epistemic/metaphysical ground and its non-redundancy via folk cultures and further obstructs the resources for a grounded critical subject.

It would be erroneous to assume that the domain of the marginalized is distorted/disjointed part of the whole, incapable of unfolding universals or coherent systems. Claims to validity of such cognitive systems and technologies rest on its firm anchoring within the whole. By nature of inherence constituent parts of a whole possess the potential to reveal the whole. Thus, the margins is a site of immense potentiality, as signifier of a space that has no fixed or categorical relation with any single institutionalized or hegemonic discourse. Its potentiality rests in refractory power and thereby offers pathways to retrace the basic organizing principles of Indic systems of knowledge.

The evidence for such epistemology is offered in the perceptible folk/marginalized non-androcentric worldview. Such universe as a play of elements, the distinctive ontology of the elemental body, transfigures the conception of and interrelatedness between spirit and matter, non-human entities, spatiality and the many planes of existence and states of consciousness and their relevance for relating to realities beyond conscious mind, the value attributed to work untethered with profit, meaning of and relation with land, difference/hierarchies, ethics, the cyclical nature of time, etc.

This metaphysical substratum mediated by and enlivened through enactments, myths, rituals, customs as part of coherent system is formative of Indic universalism and it is this shared ground that is expressive of the inherence of truth claims of the marginalized discourses. Undeniably, presentation and disputations against dominance, violations and counterclaims manifest within this form and experience. The material artifact, a product of collective labor, itself becomes a universal metaphor for positive self-affirmation, and re-imagination of the universe, radically centering collective self in cosmology. The modern conceptions of labor, materiality and individualism substitute such aesthetic with a mechanistic and atomistic worldview.

The Validity of Validity

The hegemonic deontic texts and archives with a purposive language enunciate a desired ideal and a ‘fact’ isolating it from the diffuse cognitive/cultural system and can barely provide a clue to the aesthetic. What then are the sources of validity of such folk beliefs and experience? This question strikes at the core of any epistemology founded in orality; ‘uncodified’ technologies, cognitive systems and experience and problematizes the naive idea of the detached knower and the distant object of knowledge. Such an enquiry necessitates understanding the general folk epistemic orientation and the identifiable connections between the folk and the classical to grasp the continuities and disjunctions.

The folk is the proximate arche and constitutes the substratum of a culture. Pervasion of orality signifies its primal quality in virtue of which it transcends the definitive value attributed to it in philosophical and epistemic practices. Thus, its validity lies as much as its locus within the general knowledge tradition as its inherence to ontology and synchrony with the essence of its cosmology. Given the current limitations some very basic links can be identified between folk modes of knowing and ‘formal’ epistemology.

Word or testimony/sabda is recognized, though not uncontested, among most schools of Indian epistemology as a valid source of knowledge, and has two broad conceptualizations; one in terms of the self-evident, infalliable truth of the Vedic scriptures and the other the truth claim of statements of reliable person accompanied by necessary conditions (absence of deceit and specific form of presentation). Uniqueness of orality is evidenced by the creative combination of various skills of narration, argumentation and presentation/artistic representation in highly stylized form involving a sensibility and intimacy different from Mimamsa hermeneutics and Nyaya logic.

Another shared epistemic resource is analogy/upamana with divergent conceptualization as source of knowledge and subject to intricate analysis. Generally it is a specific type of cognition generating new knowledge through similarities or resemblances.  For folk cultures analogy possess a truth bearing quality, as a proof of an idea, wise dictum of deontic value that shed light in times of moral dilemma, or exposition of a metaphysical truth.

Analogical reasoning for the folk has special significance as a didactic and literary device to elicit truth, in establishing common ground, in grounding disputes and subversion and allows for seamless flows of ideas and experiences. Off the repertoire of the reliable knowers analogical and logical reasoning is a skill cultivated optimally.

Thus, self-evident truth of such beliefs are referents of ‘facts’ or of factive collective experience whose meaning and value is tied to and codified in custom, mythologies, collective rites, festivities, everyday life and tales people tell about themselves and others. Thus, orality has a very distinctive metaphysical and epistemic value in this context.

It thus cannot be strictly translated as orality for in subsumption of other epistemic forms it radically attains a quality of universalism. Sustained by specialized communities (genealogists/bards) as testifiers/transmitters of such primal truths untethered by external justification, verdicality is intrinsic in its efficacious quality to produce culturally desired goals and reconfiguration of the world. It gains legitimacy from collectivities that participate in its recreation with the knowers.

Subversive Aesthetic

Such being the overarching frame of reference subversion and conflict are presented in specific cultural forms that resonate with the spirit of the whole. Such an aesthetic mode (continuous with the theory of emotions/rasa vada) is grounded in a positive valuation of emotions and sense experience different from western aesthetics/formalism. Emotions in folk aesthetic have a positive value as catalytic states for realization of higher states of being and grasping of truth, of the heroic, and refinement. If any it is the marginalized who have sustained the robust tradition of aesthetic as it is in this form that their representations of their self and the world are anchored.

Ironically, Nietzsche would have found an unlikely protagonist in the ‘Pariah’! Inevitably, any systematic exploration of aesthetic, and its cultural trajectories would mandate a return to its basic connotation as relating to sense(s)/perception, for discerning root categories, foundational to epistemology and metaphysics.  It then becomes possible to trace the broad trajectory of primacy accorded to reason and its affinity with sense of sight in western thought (from the Platonic allegories, idea of panoptican vision, concept of gaze) to its deployment as a mechanism of power, (as in racial differentiation, color being secondary property of vision) and technologies of surveillance. Any uncritical application of such concepts, originating within a particular historical context, to non-Western contexts obscures other realities, mechanisms of power and worldviews founded on contrary conceptualization of the senses.

Thus, sustainability of critical ‘pluriversal’ epistemology demands an investment in comparative philosophy/epistemology. It would be a fallacy to assume that engaging with the oppressed is little more than working on the fringes, with the residue of dominant knowledge systems. These vital sites allow for looking at the whole from the peripheries in enriching ways and paradoxically as one of the solid anchors by which to retrace the credence and rootedness of culture specific epistemological traditions in its critique of traditional forms of oppression.

To maximize the progress made thus far entails identifying newer sources of knowledge, exploring knowledge practices, generating root concepts that can enable coherent understanding of the many universalisms in comparativist perspective. Fundamentally, such quests are about restitution of lost ground of the oppressed, undoing the immeasurable damage of epistemic stigmatization through demystification of hegemonic myths and repositioning of and meaningful dialogue across alternative ethical cosmologies.

Contact details: vijaisri@csds.in

References

Friere, Paulo. The Pedagogy of the Oppressed. New York: Herder and Herder, 1970.

Obeyesekere, Gananatha. The Awakened Ones: Phenomenology of Visionary Experience. New York: Columbia University Press, 2012.

Matilal, B. K., A. Chakrabarti. Knowing from Words: Western and Indian Philosophical Analysis of Understanding and Testimony Dordrecht: Springer Science Business Media, 1994.

Sarukkai, Sundar. What is Science? Delhi: National Book Trust India, 2012.

de Sousa Santos, Baoventura. Epistemologies of the South: Justice against Epistemicide. London: Routledge, 2014.

Vaditya, Venkatesh. “Social Domination and Epistemic Marginalisation: Towards Methodology of the Oppressed,” Social Epistemology, DOI: 10.1080/02691728.2018.1444111, 2018.

[1] Observations are based on folk/marginalized communities of Southern India wherein knowledge is hereditarily transmitted. For example, communities have cultural mechanisms for transmission of particular types of knowledge within each community, for example among the leather workers, potters, ironsmiths, masons, sculptors, stone cutters, artists, toddy tapers, rope makers, weavers, washermen, healers, acrobats, jugglers, nomads, and tribals etc.

Author Information: Pablo Schyfter, University of Edinburgh, p.schyfter@ed.ac.uk

Schyfter, Pablo. “Inaccurate Ambitions and Missing Methodologies: Thoughts on Jeff Kochan and the Sociology of Scientific Knowledge.” Social Epistemology Review and Reply Collective 7, no. 8 (2018): 8-14.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3ZI

Understanding the practice of science is a complex and contentious field of study. Scientific practitioners, as above, are sometimes also difficult to understand.
Photo by Christian Reed via Flickr / Creative Commons

 

Jeff Kochan’s Science as Social Existence (2017) presents an engaging study of two perspectives on science and scientific knowledge: Heidegger’s existential phenomenology and the sociology of scientific knowledge (SSK). The book sets down an interesting path to merge the two traditions. Kochan tries to navigate the path’s turns and terrains in original and fruitful ways.

Here, I offer reflections from the perspective of SSK and more specifically, the Edinburgh School’s Strong Programme in the sociology of scientific knowledge. I contend that Kochan’s work does not represent or engage with SSK satisfactorily, and is hindered in its accomplishments as a result. I begin by considering Kochan’s most important claims and ambitions, before turning to my analysis.

The Nature of the Argument

First, Jeff Kochan claims that Heidegger’s existential phenomenology and SSK can fix each other’s flaws and can together constitute a superior framework for analysing science and its epistemic work and products. Kochan elaborates this first claim by using the next two.

Second, he argues that Heidegger’s work can resolve what he considers to be SSK’s long-running and unresolved problem concerning the relationship between knowledge-makers and the world about which they make knowledge. Kochan claims that the Strong Programme employs a form of realism that draws a divide between the knower and the world. He refers to this realism as a ‘glass-bulb model.’ Kochan goes on to state that ‘alternatives to [the glass-bulb model] have already begun to earn a respected place within the broader field of science studies,’ (2017, 33) though he offers no examples to support the claim. He contends that Heidegger’s assistance is imperative since ‘science studies scholars can no longer take external-world realism for granted’ (ibid.).

Third, Kochan suggests that SSK can resolve Heidegger’s comparatively limited understanding of ‘the social.’ That is, the former can lend its social scientific perspectives and methods to bolster Heidegger’s insufficient explanation of human collectives and their behaviour.  Not only does SSK offer a more detailed understanding, it also contributes tools with which to carry out research.

Finally, in his reply to Raphael Sassower’s review, Kochan dismisses the former’s criticisms about the book’s failure to address social phenomena such as capitalism, neoliberalism, and industrial-academic-military complexes (Sassower 2018) by saying, ‘these are not what my book is about’ (Kochan 2018, 3). Kochan contends that he cannot be faulted for not accomplishing goals that he never set out to accomplish. This response serves as the starting point for my own analysis.

I agree with the basics of Kochan’s reply. Sassower’s criticisms overlook or disregard the author’s intents, and like all authors Kochan is entitled to set his own goals. However, the sympathy that Kochan expects from Sassower is not one that he offers David Bloor, Barry Barnes or the others in SSK whom he criticises.

His principal criticism—the second claim above—relies on a misrepresentation of the Strong Programme’s ambitions and concerns. That is, Kochan does not describe what their work is about accurately. Moreover, what Kochan looks to draw from SSK more broadly—the third claim above—features little in the book. That is, Kochan’s book is not really about one of things that it is supposed to be about.

Here, I will first explain Kochan’s misrepresentation of Strong Programme goals and the resultant errors in his criticism. Next, I will examine Kochan’s lack of concern for crucial aspects of SSK, which reflects both his misrepresentation of the tradition and his choice not to engage with it meaningfully.

Aims and Essentials in SSK

Kochan’s unfair criticisms of the Strong Programme (and SSK more broadly) first involve the tradition’s treatment of ontological issues. Kochan argues that the Strong Programme does not offer a satisfactory analysis of the world’s existence. When he introduces SSK in the book’s first chapter, he does so by focusing on ‘the problem of how one can know that the external world exists’ (2017, 37). And yet, this was never a defining concern for those who developed SSK. Their work was not about ontology. For most of them, it still is not.

Kochan claims that the Strong Programme failed by not delivering a convincing argument for ‘the claim that the subject can, in fact, know that this world, as well as the things within it, actually exists’ (2017, 49). Bloor and Barnes’ realist position accepts a basic presupposition, held implicitly by people as they live their lives, that the world with which they interact exists.  Kochan chastises this form of realism because it does not ‘establish the existence of the external world’ (2017, 49).

But again, this was never the tradition’s intent nor is it a requisite for their actual intents. The Strong Programme did not entirely ignore ontology. Knowledge and Social Imagery, in which Bloor presents the fundamental aims and methods of the Strong Programme, mentions and engages with some ontological topics (1976). Nonetheless, they form a very limited part of the book and the tradition, and so should not take precedence when evaluating SSK. Kochan’s criticism employs a form of misrepresentation similar to the one he dislikes when Sassower applies it to Science as Social Existence.

Moreover, Kochan faults the Strong Programme for doing what it hoped to do. He argues that the main hurdle to correcting Bloor and Barnes’s flawed realism is the scholars’ ‘preoccupation with epistemological, at the expense of ontological, issues’ (2017, 50). Knowledge and Social Imagery begins with an explicit declaration of ambitions, all of which concern epistemology and social studies of knowledge. Kochan either dismisses or ignores those aims in order to convey the importance and strength of his arguments. He does the same for other SSK fundamentals.

On several occasions, Kochan chooses to cast aside concerns or commitments that are vital to the Strong Programme. For instance, when he employs Heidegger’s phenomenology to challenge the Strong Programme’s criticism of external-world sceptics, Kochan writes:

from the standpoint of Heidegger’s own response to the external-world sceptic, the distinction SSK practitioners draw between absolute and relative knowledge is somewhat beside the point. (2017, 48)

And yet, few things are as explicitly vital to the Strong Programme as a clear rejection of absolutism and a wholehearted commitment to relativism. In Knowledge and Social Imagery, Bloor writes that ‘[there] is no denying that the strong programme in the sociology of knowledge rests on a form of relativism.’ (1976, 158) Elsewhere, he summarises the basic relation between absolutism and relativism as follows:

If you are a relativist you cannot be an absolutist, and if you are not a relativist you must be an absolutist. Relativism and absolutism are mutually exclusive positions. (2007, 252)

Bloor’s writings on the study of knowledge, like his analyses of rules and rule-following (1997), invariably draw distinctions between absolutism and relativism and unequivocally commit to the latter. As such, when Kochan treats the distinction as ‘somewhat beside the point,’ he is marginalising an indispensable component of what he sets out to criticise.

Finally, Kochan at times disregards the importance of social collectives to the Strong Programme and SSK more broadly. For instance, when analysing Bloor’s perspective on referencing as an intentional state requiring specific forms of content, Kochan writes:

For the purposes of the present analysis, whether that content is best explained in collectivist or individualist terms is beside the point. (2017, 79)

Crucial to social science is the relationship (and often the distinction) between collective and individual phenomena. The Strong Programme embraces and employs collectivism, and in part distinguishes itself through its understanding of knowledge as a social institution. Thus the distinction between individualism and collectivism is not ‘beside the point,’ and understanding SSK demands a dedicated concern for the social. Unfortunately, Kochan does not recognise its importance.

The Social and Practice

As part of his attempt to draw Heidegger and SSK into partnership, Kochan argues that the former can benefit from SSK’s comprehension of the social and its tools for exploring its phenomena. However, Kochan dedicates a surprisingly small part of his book to discussing social scientific topics. Most notably, his explanation of the social character of scientific work and scientific knowledge is very limited and lacks the detail and nuance that he offers when discussing Heidegger and ontology.

Kochan repeatedly explains the social by referring to ‘tradition.’ He writes that Heidegger and SSK both ‘regard science as a finite, social and historical practice’ (2017, 208) but relies on opaque notions of history and tradition to support the claim. He refers to the ‘history of thinking’ (2017, 6) that determines how a community behaves and knows, and contends that an individual’s understanding of things ‘can be explained by reference to the tradition which structures the way she thinks about those things’ (2017, 221).

The inherited a priori framework that structures thinking gains its authority from the ‘tradition which both enables and is sustained by [the everyday work-world]’ (2017, 224). Finally, Kochan argues that Bloor and Heidegger study normativity—a topic crucial to SSK—by ‘tracing its origin back to tradition’ (2017, 217).

Kochan rests his explanation of the social on ‘history’ and ‘tradition,’ but never offers an explicit, clear definition of either one. Although on occasion he employs terms like ‘socio-cultural,’ Kochan does not dedicate attention to SSK’s concern for social collectives. He mentions the importance of socialisation, but does not support the claim with evidence or analysis. As such, Kochan does not explore or employ the field’s social scientific concepts or methods, both of which he describes as the tradition’s contribution to his hybrid theory.

Kochan’s lack of concern for the social also involves a general disregard for scientific practice. Early in the book, Kochan states that he will demonstrate how SSK and Heidegger offer ‘mutually reinforcing models of the way scientists get things done’ (2017, 8). However, he does not address the lived undertakings involved in scientific work.

The way scientists get things done’ concerns more than their place within an abstract notion of tradition. It also involves what practitioners do, including the most mundane of behaviours. Kochan criticises science studies for arguing that ‘theory can be unproblematically reduced to practice. (2017, 57).

He offers no evidence that science studies believes this, though if it did, Kochan would be correct. Understanding science and its knowledge cannot be reduced entirely to making sense of its practices; science is more than what specific groups of people do. However, understanding science also cannot circumvent what happens in places like laboratories, fields and conferences rooms.

One example of Kochan’s omission of practice is his discussion of Joseph Rouse’s criticisms of Heidegger’s ‘theory-dominant account of the scientific enterprise’ (2017, 86). Heidegger’s analysis of science rests on the notion that specific forms of ‘projection’ underlie our epistemic engagement with entities and events. Science’s start involved a ‘change-over’ to a mathematical form of projection called mathesis and a ‘shift in experience within the range of possible understandings of nature opened up by the mathematical projection’ (2017, 90).

Rouse criticises Heidegger for never offering a satisfactory explanation of how ‘change-overs’ from one projection to another occur. Kochan challenges Rouse much as he criticises science studies: by saying that the latter wants to reduce everything to practice at the total expense of theory. I believe that Kochan fails to engage with the real issue. If Rouse supports a practice-only explanation of science—which Kochan does not demonstrate convincingly—then the former’s position is flawed.

However, Rouse’s failure would not resolve Heidegger’s problem. The latter would still not offer a clear explanation of what occurs in the lived world of scientific work. He would still fail to explain how change-overs happen. It is hardly radical to suggest that science is something that was developed by communities of people doing certain things. If its birth involved a novel form of projection, then it is also hardly radical to wonder how that projection came to be.

Moreover, Heidegger’s mathesis veers Kochan away from the particularities and nuances of scientific work. He writes:

Heidegger’s account of modern science as mathesis began with Heidegger’s insistence that facts, measurement, and experiment, broadly construed, figure as continuous threads running from modern science all the way back through medieval to ancient science. (2017, 281)

Such a claim relies on an excessively broad conceptualisation of facts, measurements, experiments and other lived components of science. It does not reflect the workings of scientific practice, which SSK seeks to investigate. In a sense, commitment to the claim involves a belittling of empirical study. It also involves marginalising one of SSK’s most important contributions to the study of science: its methodologies.

Missing Methodologies

Kochan does not present any analysis of SSK methodologies, nor does he offer his own. To some, methodologies might appear to be secondary components of theoretical traditions. To those in SSK and especially those who developed the Strong Programme, methodologies are all-important.

In the first and second pages of Knowledge and Social Imagery, Bloor introduces his aims in the book and his ambitions for the programme he is about to present. He states that the purpose of his book is to challenge social scientific and philosophical arguments that fail to place science and its knowledge ‘within the scope of a thorough-going sociological scrutiny’ (1976, 4). Bloor then explains that as a result, ‘the discussions which follow will sometimes, though not always, have to be methodological rather than substantive’ (1976, 4).

Put simply, Bloor sets out to demonstrate that science can be studied sociologically and to establish the methods with which to carry out those studies. He introduces four tenets—of causality, impartiality, symmetry and reflexivity—and states that they will ‘define what will be called the strong programme in the sociology of knowledge’ (1976, 7) As such, I believe that Kochan’s lack of concern for methodology is another example of overlooking what SSK seeks to do. Moreover, it is an example of Kochan not incorporating SSK meaningfully into his hybrid theory.

In his introduction, Kochan summarises each chapter’s aim and content. He describes Chapter 6 as an exploration of a historical episode involving Robert Boyle and Francis Line, as well as an evaluation of Bloor’s concept of ‘social imagery’ and Heidegger’s notions of ‘world picture’ and ‘basic blueprint.’ Kochan writes:

Bloor’s work suggests ways in which Heidegger’s concepts of ‘world picture’ and ‘basic blueprint’ might be rephrased and further developed in a more sociological idiom…” (2017, 15)

Here, Kochan seems to describe the potential of Bloor’s scholarship as principally a semantic reformulation of Heidegger’s ideas, or at most a set of concepts that can make Heidegger’s work more accessible to practitioners in SSK and other social studies of science. I believe this is one symptom of a broader and very important trouble. Kochan does not consider the possibility that the Strong Programme and SSK involve more than concepts.

He does not acknowledge vital parts of the traditions with great potentialfor his mission. He chooses to mention empirical SSK studies and their research practices only in passing. For instance, Kochan does not engage seriously with the Bath School and its Empirical Programme of Relativism (EPOR), although its contributions to SSK were no less important than those of the Edinburgh School. (Collins 1981, 1983) EPOR’s many case studies helped put the latter’s methodological tenets into action and thus give greater substance to what Bloor defines as the core of the Strong Programme.

One can also consider the importance of methodology by returning to the issue of the external world. I have argued that the Strong Programme did not embark on an ontological mission. Kochan’s criticism of what he terms a ‘glass-bulb model’ relies on an inaccurate representation of what the tradition set out to do. I also believe that his criticism overlooks or belittles the methodological function of Bloor and Barnes’ realism. Kochan writes:

Barnes does not actually argue for the existence of the external world, but only for the utility of the assertion that such a world exists. (2017, 29)

‘Only for the utility’ implies that methodological uses and effectiveness are inferior parameters with which to judge the quality and appropriateness of ontological commitments. I believe that Barnes’s choice is at least in part methodological. It serves a form of research not concerned with ontological questions and instead intent on studying the lived workings of science and its knowledge-making. If Kochan is allowed to set his own research and writing goals, so are the Edinburghers. Moreover, this is a case of Kochan not embracing all-important lessons from SSK. The tradition offers limited insights into the social if its methodology is not lent fuller attention.

From Glass Bulbs to Light Bulbs

I began by listing three claims which I believe capture Kochan’s key aims in Science as Social Existence. I then introduced one of his most important responses to Raphael Sassower’s review. Two questions bind the four claims together. First, what is a person’s work about? Second, does the work accomplish what it means to do? These help to evaluate Kochan’s treatment of work with which he engages, and to evaluate his success in doing so. In both cases, I believe that Science as Social Existence displays flaws.

As I have demonstrated, Kochan misrepresents what Barnes, Bloor and others in SSK set out to do (he does not acknowledge what their work is about) and he does not employ SSK material to resolve Heidegger’s limited understanding of the social (he does not accomplish an important part of what his book is supposed to be about.)

One can understand the book’s problems by expanding on Kochan’s glass-bulb metaphor. Kochan contends that Barnes and Bloor commit to a division that separates people and the world they seek to understand: a ‘glass bulb model.’ His perspective would benefit from viewing the Strong Programme as a working light bulb. It may employ a glass-bulb, but cannot be reduced to it.

To understand what it is, how it work and what it can offer, one must examine a light bulb’s entire constitution. Only by acknowledging what else is required to generate light and by considering what that light is meant to enable, can one present an accurate and useful analysis of its limitations and potential. It also shows why the glass bulb exists, and why it belongs in the broader system.

Contact details: p.schyfter@ed.ac.uk

References

Bloor, David. 1976. Knowledge and Social Imagery. Chicago: University of Chicago Press.

Bloor, David. 1997. Wittgenstein, Rules and Institutions. London: Routledge.

Bloor, David. 2007. “Epistemic Grace: Antirelativism as Theology in Disguise.” Common Knowledge 13 (2-3): 250-280. doi: 10.1215/0961754X-2007-007

Bloor, David. 2016. “Relativism Versus Absolutism: In Defense of a Dichotomy.” Common Knowledge 22 (3): 288-499. doi: 10.1215/0961754X-3622372

Collins, Harry. 1981. “Stages in the Empirical Programme of Relativism.” Social Studies of Science 11 (1): 3-10. doi: 10.1177/030631278101100101

Collins, Harry. 1983. “An Empirical Relativist Programme in the Sociology of Scientific Knowledge.” In Science Observed: Perspectives on the Social Study of Science, edited by Karin Knorr-Cetina and Michael Mulkay, 115–140. London: Sage.

Kochan, Jeff. 2017. Science as Social Existence: Heidegger and the Sociology of Scientific Knowledge. Cambridge: Open Book Publishers

Kochan, Jeff. 2018. “On the Sociology of Subjectivity: A Reply to Raphael Sassower.” Social Epistemology Review and Reply Collective 7 (5): 39-41.

Sassower, Raphael. 2018. “Heidegger and the Sociologists: A Forced Marriage?” Social Epistemology Review and Reply Collective 7 (5): 30-32.

Author Information: Moti Mizrahi, Florida Institute of Technology, mmizrahi@fit.edu

Mizrahi, Moti. “The (Lack of) Evidence for the Kuhnian Image of Science.” Social Epistemology Review and Reply Collective 7, no. 7 (2018): 19-24.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3Z5

See also:

Image by Narcis Sava via Flickr / Creative Commons

 

Whenever the work of an influential philosopher is criticized, a common move made by those who seek to defend the influential philosopher’s work is to claim that his or her ideas have been misconstrued. This is an effective move, of course, for it means that the critics have criticized a straw man, not the ideas actually put forth by the influential philosopher. However, this move can easily backfire, too.

For continued iterations of this move could render the ideas in question immune to criticism in a rather ad hoc fashion. That is to say, shouting “straw man” every time an influential philosopher’s ideas are subjected to scrutiny is rather like shouting “wolf” when none is around; it could be seen as an attempt to draw attention to that which may not be worthy of attention.

The question, then, is whether the influential philosopher’s ideas are worthy of attention and/or acceptance. In particular, are Kuhn’s ideas about scientific revolutions and incommensurability worthy of acceptance? As I have argued, along with a few other contributors to my edited volume, The Kuhnian Image of Science: Time for a Decisive Transformation? (2018), they may not be because they are based on dubious assumptions and fallacious argumentation.

In their reviews of The Kuhnian Image of Science: Time for a Decisive Transformation? (2018), both Markus Arnold (2018) and Amanda Bryant (2018) complain that the contributors who criticize Kuhn’s theory of scientific change have misconstrued his philosophy of science and they praise those who seek to defend the Kuhnian image of science. In what follows, then, I would like to address their claims about misconstruing Kuhn’s theory of scientific change. But my focus here, as in the book, will be the evidence (or lack thereof) for the Kuhnian image of science. I will begin with Arnold’s review and then move on to Bryant’s review.

Arnold on the Evidence for the Kuhnian Image of Science

Arnold (2018, 42) states that “one of the results of [his] review” is that “the ‘inductive reasoning’ intended to refute Kuhn’s incommensurability thesis (found in the first part of the book) is actually its weakest part.” I am not sure what he means by that exactly. First, I am not sure in what sense inductive reasoning can be said to refute a thesis, given that inductive arguments are the sort of arguments whose premises do not necessitate the truth of their conclusions, whereas a refutation of p, if sound, supposedly shows that p must be false.

Second, contrary to what Arnold claims, I do not think that the chapters in Part I of the book contain “‘inductive reasoning’ intended to refute Kuhn’s incommensurability thesis” (Arnold 2018, 42). Speaking of my chapter in particular, Chapter 1 (Mizrahi 2018b, 32-38), it contains two arguments intended to show that there is no deductive support for the Kuhnian thesis of taxonomic incommensurability (Mizrahi 2018b, 32), and an argument intended to show that there is no inductive support for the Kuhnian thesis of taxonomic incommensurability (Mizrahi 2018b, 37).

These arguments are deductive, not inductive, for their premises, if true, guarantee the truth of their conclusions. Besides, to argue that there is no evidence for p is not the same as arguing that p is false. None of my arguments is intended to show that p (namely, the Kuhnian thesis of taxonomic incommensurability) is false.

Rather, my arguments show that there is no evidence for p (namely, the Kuhnian thesis of taxonomic incommensurability). For these reasons, as a criticism of Part I of the book, Arnold’s (2018, 42) claim that “the ‘inductive reasoning’ intended to refute Kuhn’s incommensurability thesis (found in the first part of the book) is actually its weakest part” completely misses the mark.

Moreover, the only thing I could find in Arnold’s review that could be construed as support for this claim is the aforementioned complaint about straw-manning Kuhn. As Arnold (2018, 43) puts it, “the counter-arguments under consideration brought forward against his model seem, paradoxically, to underestimate the complexity of Kuhn’s claims.”

In other words, Kuhn’s theory of scientific change is so complex and those who attempt to criticize it fail to appreciate its complexity. But why? Why do the criticisms fail to appreciate the complexity of Kuhn’s theory? How complex is it such that it defies interpretation and criticism? Arnold does not say. Instead, he (Arnold 2018, 43) states that “it is not clear, why Kuhn’s ‘image of science’ should be dismissed because […] taxonomic incommensurability ‘is the exception rather than the rule’ [Mizrahi 2018b,] (38).”

As I argue in Chapter 1, however, the fact that taxonomic incommensurability “is the exception rather than the rule” (Mizrahi 2018b, 38) means that Kuhn’s theory of scientific change is a bad theory because it shows that Kuhn’s theory has neither explanatory nor predictive power. A “theory” with no explanatory and/or predictive power is no theory at all (Mizrahi 2018b, 37-38). From his review, however, it is clear that Arnold thinks of Kuhn’s image of science as a theory of scientific change.

For instance, he talks about “Kuhn’s epistemology” (Arnold 2018, 45), “Kuhn’s theory of incommensurability” (Arnold 2018, 46), and Kuhn’s “complex theory of science” (Arnold 2018, 42). If Kuhn’s thesis of taxonomic incommensurability has no explanatory and/or predictive power, then it is a bad theory, perhaps not even a theory at all, let alone a general theory of scientific knowledge or scientific change.

In that respect, I found it rather curious that, on the one hand, Arnold approves of Alexandra Argamakova’s (2018) criticism of the universal ambitions of Kuhn’s image of science, but on the other hand, he wants to attribute to Kuhn the view that “scientific revolutions are rare” (Arnold 2018, 43). Arnold quotes with approval Argamakova’s (2018, 54) claim that “distinct breakthroughs in science can be marked as revolutions, but no universal system of criteria for such appraisal can be formulated in a normative philosophical manner” (emphasis added).

In other words, if Argamakova is right, then there can be no philosophical theory of scientific change in general, Kuhnian or otherwise. So Arnold cannot be in agreement with Argamakova without thereby abandoning the claim that Kuhn’s image of science is an “epistemology” (Arnold 2018, 45) of scientific knowledge or a “complex theory of science” (Arnold 2018, 42).

Arnold (2018, 45) also asserts that “the allegation that Kuhn developed his theory on the basis of selected historical cases is refuted” by Kindi (2018). Even if that were true, it would mean that Kuhn’s theory has no inductive support, as I argue in Chapter 1 of the book (Mizrahi 2018b, 32-38). So I am not sure how this point is supposed to help Arnold in defending the Kuhnian image of science. For if there is no inductive support for the Kuhnian image of science, as Arnold seems to think, and there is no deductive support either, as I (Mizrahi 2018b, 25-44) and Park (2018, 61-74) argue, then what evidence is there for the Kuhnian image of science?

For present purposes, the important point is not how Kuhn “developed his theory” (Arnold 2018, 45) but rather what supports his theory of scientific change. What is the evidence for a Kuhnian theory of scientific change? If I am right (Mizrahi 2018b), or if Park (2018) is right, then there is neither deductive support nor inductive support for a Kuhnian theory of scientific change. If Argamakova is right, then there can be no general theory of scientific change at all, Kuhnian or otherwise.

It is also important to note here that Arnold (2018, 45) praises both Kindi (2018) and Patton (2018) for offering “a close reading of Kuhn’s work,” but he does not mention that they offer incompatible interpretations of that work, specifically, of the evidence for Kuhn’s ideas about scientific change. On Kindi’s reading of Kuhn, the argument for the Kuhnian image of science is a deductive argument from first principles, whereas on Patton’s reading of Kuhn, the argument for the Kuhnian image of science is an inference to the best explanation (see Patton 2015, cf. Mizrahi 2018a, 12-13; Mizrahi 2015, 51-53).

Bryant on the Evidence for the Kuhnian Image of Science

Like Arnold, Bryant (2018, 1) wonders whether Kuhn’s views on scientific change can be pinned down and criticized or perhaps there are many “Thomases Kuhn.” Again, I think we do not want to make Kuhn’s views too vague and/or ambiguous (Argamakova 2018, 47-50), and thus immune to criticism in a rather ad hoc fashion. For that, in addition to being based on dubious assumptions and fallacious argumentation, would be another reason to think that Kuhn’s views are not worthy of acceptance.

Bryant (2018, 1) also wonders “whether the so-called Kuhnian image of science is really so broadly endorsed as to be the potential subject of (echoing Kuhn’s own phrase) a ‘decisive transformation’.” As I see it, however, the question is not whether the Kuhnian image of science is “broadly endorsed.” Rather, the question is whether “we are now possessed” by it. When Kuhn wrote that (in)famous first line of the introduction to The Structure of Scientific Revolutions, the image of science by which we were possessed was a positivist image of science according to which science develops “by the accumulation of individual discoveries and inventions” (Kuhn 1962/1996, 2). Arguably, philosophers of science were never possessed by such a positivist image of science as much as they are possessed by the Kuhnian image of science.

This is evidenced by the fact that no positivist work in philosophy of science has had as much impact as Kuhn’s seminal work (Mizrahi 2018a, 1-2). Accordingly, even if the Kuhnian image of science is not “broadly endorsed,” it is quite clear that philosophers of science are possessed by it. For this reason, an “exorcism,” or a “decisive transformation,” is required in order to rid ourselves of this image of science. And what better way to do so than by showing that it is based on dubious assumptions and fallacious argumentation.

As far as the evidence (or lack thereof) for the Kuhnian image of science, Bryant (2018, 2) claims that “Case studies can be interesting, informative, and evidential” (emphasis added). I grant that case studies can be interesting and informative, but I doubt that they can be evidential. From “Scientific episode E has property F,” it does not follow that F is a characteristic of scientific episodes in general. As far as Kuhn is concerned, it is clear that he used just a few case studies (e.g., the phlogiston case) in support of his ideas about scientific change and incommensurability.

The problem with that, as I argue in Chapter 1 of the book (Mizrahi 2018b, 32-38), is that no general theory of scientific change can be derived from a few cherry-picked case studies. Even if we grant that the phlogiston case is a genuine case of a so-called “Kuhnian revolution” and taxonomic incommensurability, despite the fact that there are rebutting defeaters (Mizrahi 2018b, 33-36), no general conclusions about the nature of science can be drawn from one (or even a few) such cases (Mizrahi 2018b, 36-37).

From the fact that one (or a few) cherry-picked episode(s) from the history of science exhibits a particular property, it does not follow that all scientific episodes have that property; otherwise, from the “Piltdown man” episode we would have to conclude that fraud characterizes scientific discovery in general (Mizrahi 2018b, 37-38).

Speaking of scientific discovery, Bryant (2018, 2) takes issue with the fact that I cite “just two authors, Eric Oberheim and Paul Hoyningen-Huene, who use the language of discovery to characterize incommensurability.” For Bryant (2018, 2), this suggests that “it isn’t clear that the assumption Mizrahi takes pains to reject is particularly widespread” (emphasis added). I suppose that “the assumption” in question here is that Kuhn “discovered” incommensurability.

If so, then I would like to clarify that I mention the fact that Oberheim and Hoyningen-Huene talk about incommensurability in terms of discovery, and claim that Kuhn “discovered” it, not to argue against it (i.e., to argue that Kuhn did not discover incommensurability), but rather to show that some of the elements of the Kuhnian image of science, such as incommensurability, are sometimes taken for granted. When it is said that someone has discovered something, it gives the impression that what has been discovered is a fact, and so no arguments are needed.

When it comes to incommensurability, however, it is far from clear that it is a fact about scientific change, and so good arguments are needed in order to establish that episodes of scientific change exhibit taxonomic incommensurability. If I am right, or if Park (2018) and Sankey (2018) are right, then there are no good arguments that establish this.

Not Conclusions, But Questions

In light of the above, I think that the questions raised in the edited volume under review remain urgent (cf. Rehg 2018). Are there good reasons or compelling evidence for the Kuhnian model of theory change in science? If there are no good reasons or compelling evidence for such a model, as I (Mizrahi 2018b), Park (2018), and Sankey (2018) argue, what’s next for philosophers of science? Should we abandon the search for a general theory of science, as Argamakova (2018) suggests? Are there better models of scientific change? Perhaps evolutionary (Marcum 2018) or orthogenetic (Renzi and Napolitano 2018) models?

• • •

I would like to thank Markus Arnold and Amanda Bryant for their thoughtful reviews. I am also grateful to Adam Riggio and Eric Kerr for organizing this book symposium and for inviting me to participate.

Contact details: mmizrahi@fit.edu

References

Argamakova, Alexandra. “Modeling Scientific Development: Lessons from Thomas Kuhn.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 45-59. London: Rowman & Littlefield, 2018.

Arnold, Markus. “Is There Anything Wrong With Thomas Kuhn?” Social Epistemology Review and Reply Collective 7, no. 5 (2018): 42-47.

Bryant, Amanda. “Each Kuhn Mutually Incommensurable.” Social Epistemology Review and Reply Collective 7, no. 6 (2018): 1-7.

Kindi, Vasso. “The Kuhnian Straw Man.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 95-112. London: Rowman & Littlefield, 2018.

Kuhn, Thomas S. The Structure of Scientific Revolutions. Third Edition. Chicago: The University of Chicago Press, 1962/1996.

Marcum, James A. “Revolution or Evolution in Science? A Role for the Incommensurability Thesis?” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 155-173. London: Rowman & Littlefield, 2018.

Mizrahi, Moti. “A Reply to Patton’s ‘Incommensurability and the Bonfire of the Meta-Theories.” Social Epistemology Review and Reply Collective 4, no. 10 (2015): 51-53.

Mizrahi, Moti. “Introduction.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 1-22. London: Rowman & Littlefield, 2018a.

Mizrahi, Moti. “Kuhn’s Incommensurability Thesis: What’s the Argument?” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 25-44. London: Rowman & Littlefield, 2018b.

Park, Seungbae. “Can Kuhn’s Taxonomic Incommensurability be an Image of Science?” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 61-74. London: Rowman & Littlefield, 2018.

Patton, Lydia. “Incommensurability and the Bonfire of the Meta-Theories: Response to Mizrahi.” Social Epistemology Review and Reply Collective 4, no. 7 (2015): 51-58.

Patton, Lydia. “Kuhn, Pedagogy, and Practice: A Local Reading of Structure.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 113-130. London: Rowman & Littlefield, 2018.

Rehg, William. “Kuhn’s Image of Science.” Metascience (2018): https://doi.org/10.1007/s11016-018-0306-2.

Renzi, Barbara G. and Giulio Napolitano. “The Biological Metaphors of Scientific Change.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 177-190. London: Rowman & Littlefield, 2018.

Author Information: James A. Marcum, Baylor University, james_marcum@baylor.edu

Marcum, James A. “A Role for Taxonomic Incommensurability in Evolutionary Philosophy of Science.” Social Epistemology Review and Reply Collective 7, no. 7 (2018): 9-14.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3YP

See also:

Image by Sanofi Pasteur via Flickr / Creative Commons

 

In a review of my chapter (Marcum 2018), Amanda Bryant (2018) charges me with failing to discuss the explanatory role taxonomic incommensurability (TI) plays in my revision of Kuhn’s evolutionary philosophy of science. To quote Bryant at length,

One of Marcum’s central aims is to show that incommensurability plays a key explanatory role in a refined version of Kuhn’s evolutionary image of science. The role of incommensurability on this view is to account for scientific speciation. However, Marcum shows only that we can characterize scientific speciation in terms of incommensurability, without clearly establishing the explanatory payoff of so doing. He does not succeed in showing that incommensurability has a particularly enriching explanatory role, much less that incommensurability is “critical for conceptual evolution within the sciences” or “an essential component of…the growth of science” (168).

Bryant is right. I failed to discuss the explanatory role of TI for the three historical case studies, as listed in Table 8.1, in section 5, “Revising Kuhn’s Evolutionary Image of Science and Incommensurability,” of my chapter. Obviously, my aim in this response, then, is to amend that failure by discussing TI’s role in the case studies and by revising the chapter’s Table to include TI.

Before discussing the role of TI in the historical case studies, I first develop the notion of TI in terms of Kuhn’s revision of the original incommensurability thesis. Kuhn (1983) responded to critics of the original thesis in a symposium paper delivered at the 1982 biannual meeting of the Philosophy of Science Association.

In the paper, Kuhn admitted that his primary intention for incommensurability was more “modest” than with what critics had charged him. Rather than radical or universal changes in terms and concepts—what is often called “global” incommensurability (Hoyningen-Huene 2005, Marcum 2015, Simmons 1994)—Kuhn claimed that only a handful of terms and concepts are incommensurable after a paradigm shift. He called this thesis “local” incommensurability.

More Common Than Incommensurable

Kuhn’s revision of the original incommensurability thesis has important implications for the TI thesis. To that end, I propose three types of TI. The first is comparable to Kuhn’s local incommensurability in which only a small number of terms and concepts are incommensurable, between the lexicons of two scientific specialties. The second is akin to global incommensurability in which two lexicons are radically and universally incommensurable with one another—sharing only a few commensurable terms and concepts.

An example of this type of incommensurability is the construction of a drastically new lexicon accompanying the evolution of a specialty. Both local and global TI represent, then, two poles along a continuum. For the type of TI falling along this continuum, I propose the notion of regional TI—in keeping with the geographical metaphor.

Unfortunately, sharper delineation among the three types of TI in terms of the quantity and quality of incommensurable and commensurable terms and concepts composing taxonomically incommensurable lexicons cannot be made currently, other than local TI comprises one end of the continuum while global TI the other end, with regional TI occupying an intermediate position between them. Notwithstanding this imprecise delineation, the three types of TI are apt for explaining the evolution of the microbiological specialties of bacteriology, virology, and retrovirology, especially with respect to their tempos and modes.

Revised Table. Types of tempo, mode, and taxonomic incommensurability for the evolution of microbiological specialties of bacteriology, virology, and retrovirology (see text for details).

Scientific Specialty Tempo Mode Taxonomic

Incommensurability

 

Bacteriology Bradytelic Phyletic Global

 

Virology Tachytelic Quantal Regional

 

Retrovirology Horotelic Speciation Local

 

 

Examples Bacterial and Viral

As depicted in the Revised Table, the evolution of bacteriology, with its bradytelic tempo and phyletic mode, is best accounted for through global TI. A large number of novel incommensurable terms and concepts appeared with the evolution of bacteriology and the germ theory of disease, and global TI afforded the bacteriology lexicon the conceptual space to evolve fully and independently by isolating that lexicon from both botany and zoology lexicons, as well as from other specialty lexicons in microbiology.

For example, in terms of microbiology as a specialty separate from botany and zoology, bacteria are prokaryotes compared to other microorganisms such as algae, fungi, and protozoa, which are eukaryotes. Eukaryotes have a nucleus surrounded by a plasma membrane that separates the chromosomes from the cytoplasm, while prokaryotes do not. Rather, prokaryotes like bacteria have a single circular chromosome located in the nucleoid region of the cell.

However, the bacteriology lexicon does share a few commensurable terms and concepts with the lexicons of other microbiologic specialties and with the cell biology lexicons of botany and zoology. For example, both prokaryotic and eukaryotic cells contain a plasma membrane that separates the cell’s interior from the external environment. Examples of many other incommensurable (and of a few commensurable) terms and concepts make up the lexicons of these specialties but suffice these examples to provide how global TI provided the bacteriology lexicon a cognitive environment so that it could evolve as a distinct specialty.

Also, as depicted in the Revised Table, the evolution of virology, with its tachytelic tempo and quantal mode, is best accounted for through regional TI. A relatively smaller number of new incommensurable terms and concepts appeared with the evolution of virology compared to the evolution of bacteriology, and regional TI afforded the virology lexicon the conceptual space to evolve freely and self-sufficiently by isolating that lexicon from the bacteriology lexicon, as well as from other biology lexicons.

For example, the genome of the virus is surrounded by a capsid or protein shell, which distinguishes it from both prokaryotes and eukaryotes—neither of which have such a structure. Moreover, viruses do not have a constitutive plasma membrane, although some viruses acquire a plasma membrane from the host cell when exiting it during lysis. However, the function of the viral plasma membrane is different from that for both prokaryotes and eukaryotes.

Interestingly, the term plasma membrane for the virology lexicon is both commensurable and incommensurable, when compared to other biology lexicons. The viral plasma membrane is commensurable in that it is comparable in structure to the plasma membrane of prokaryotes and eukaryotes but it is incommensurable in that it functions differently. Finally, some viral genomes are composed of DNA similar to prokaryotic and eukaryotic genomes while others are composed of RNA; and, it is this RNA genome that led to the evolution of the retrovirology specialty.

Image by AJC1 via Flickr / Creative Commons

And As Seen in the Retrovirological

As depicted lastly in the Revised Table, the evolution of retrovirology, with its horotelic tempo and speciation mode, is best accounted for through local TI. An even smaller number of novel incommensurable terms and concepts accompanied the evolution of retrovirology as compared to the number of novel incommensurable terms and concepts involved in the evolution of the virology lexicon vis-à-vis the bacteriology lexicon.

And, as true for the role of TI in the evolution of bacteriology and virology, local TI afforded the retrovirology lexicon the conceptual space to evolve rather autonomously by isolating that lexicon from the virology and bacteriology lexicons. For example, retroviruses, as noted previously, contain only an RNA genome but the replication of the retrovirus and its genome does not involve replication of the RNA genome from the RNA directly, as for other RNA viruses.

Rather, retrovirus replication involves the formation of a DNA provirus through the enzyme reverse transcriptase. The DNA provirus is subsequently incorporated into the host’s genome, where it remains dormant until replication of the retrovirus is triggered.

The incommensurability associated with retrovirology evolution is local since only a few incommensurable terms and concepts separate the virology and retrovirology lexicons. But that incommensurability was critical for the evolution of the retrovirology specialty (although given how few incommensurable terms and concepts exist between the virology and retrovirology lexicons, a case could be made for retrovirology representing a subspecialty of virology).

Where the Payoff Lies

In her review, Bryant makes a distinction, as quoted above, between characterizing the evolution of the microbiological specialties via TI and explaining their evolution via TI. In terms of the first distinction, TI is the product of the evolution of a specialty and its lexicon. In other words, when reconstructing historically the evolution of a specialty, the evolutionary outcome is a new specialty and its lexicon—which is incommensurable locally, regionally, or globally with respect to other specialty lexicons.

For example, the retrovirology lexicon—when compared to the virology lexicon—has few incommensurable terms, such as DNA provirus and reverse transcriptase. The second distinction involves the process or mechanism by which the evolution of the specialty’s lexicon takes place vis-à-vis TI. In other words, TI plays a critical role in the evolutionary process of a specialty and its lexicon.

Keeping with the retrovirology example, the experimental result that actinomysin D inhibits Rous sarcoma virus was an important anomaly with respect to the virology lexicon, which could only explain the replication of RNA viruses in terms of the Central Dogma’s flow of genetic information. TI, then, represents the mechanism, i.e. by providing the conceptual space, for the evolution of a new specialty with respect to incommensurable terms and concepts.

In conclusion, the “explanatory payoff” for TI with respect to the revised Kuhnian evolutionary philosophy of science is that such incommensurability provides isolation for a scientific specialty and its lexicon so that it can evolve from a parental stock. For, without the conceptual isolation to develop its lexicon, a specialty cannot evolve.

Just as biological species like Darwin’s Galápagos finches, for instance, required physical isolation from one another to evolve (Lack 1983), so the evolving microbiological specialties also required conceptual isolation from one another and from other biology specialties and their lexicons. TI accounts for or explains the evolution of science and its specialties in terms of providing the necessary conceptual opportunity for the specialties to emerge and then to evolve.

Moreover, it is of interest to note that an apparent relationship exists between the various tempos and modes and the different types of TI. For example, the retrovirology case study suggests that local TI is commonly associated with a horotelic tempo and speciation mode—which to some extent makes sense intuitively. In other words, speciation requires far fewer lexical changes than phylogeny, which requires many more lexical changes or an almost completely new lexicon—as the evolution of bacteriology illustrates.

The proposed evolutionary philosophy of science, then, accounts for the emergence of bacteriology in terms of a specific tempo and mode, as well as a particular type of TI; and, it thereby provides a rich explanation for its emergence. Furthermore, the quantity and quality of taxonomically incommensurable terms and concepts involved in the evolution of the microbiology specialties suggest the following relative frequency for the different types of TI: local TI > regional RI > global TI.

The Potential of Evolutionary Paradigms

Finally, I proposed in my chapter that Kuhn’s revised evolutionary philosophy of science is a good candidate for a general philosophy of science, even in light of philosophy of science’s current pluralistic or perspectival stance. Interestingly, regardless of the increasing specialization within the natural sciences (Wray 2005), these sciences are moving towards integration in order to tackle complex natural phenomena. For example, cancer is simply too complex a disease to succumb to a single specialty (Williams 2015).

The revised Kuhnian evolutionary philosophy of science helps to appreciate and account for the drive and need for integration of different scientific specialties to investigate complex natural phenomena, such as cancer. Specifically, one of the important reasons for the integration is that no single scientist can master the necessary lexicons, whether biochemistry, bioinformatics, cell biology, genomic biology, immunology, molecular biology, physiology, etc., needed to investigate and eventually to cure the disease. A scientist might be bilingual or even trilingual with respect to specialties but certainly not multilingual.

The conceptual and methodological approach, which integrates these various specialties, stands a better chance in discovering the pathological mechanisms involved in carcinogenesis and thereby in developing effective therapies. Integrated science, then, requires a systems or network approach since no one scientists can master the various specialties needed to investigate a complex natural phenomenon.

In the end, TI helps to make sense of why integrated science is important for the future evolution of science and of how an evolutionary philosophy of science can function as a general philosophy of science.

Contact details: james_marcum@baylor.edu

References

Bryant, Amanda. “Each Kuhn Mutually Incommensurable”, Social Epistemology Review and Reply Collective 7, no. 6 (2018): 1-7.

Hoyningen-Huene, Paul. “Three Biographies: Kuhn, Feyerabend, and Incommensurability”, In Rhetoric and Incommensurability. Randy A. Harris (ed.), West Lafayette, IN: Parlor Press, (2005): 150-175.

Kuhn, Thomas S. “Commensurability, Comparability, Communicability”, PSA: 1982, no. 2

(1983): 669-688.

Lack, David. Darwin’s Finches. Cambridge: Cambridge University Press, (1983).

Marcum, James A. Thomas Kuhn’s Revolutions: A Historical and an Evolutionary Philosophy of Science. London: Bloomsbury, (2015).

Marcum, James A. “Revolution or Evolution in Science?: A Role for the Incommensurability Thesis?”, In The Kuhnian Image of Science: Time for a Decisive Transformation? Moti Mizrahi (ed.), Lanham, MD: Rowman & Littlefield, (2018): 155-173.

Simmons, Lance. “Three Kinds of Incommensurability Thesis”, American Philosophical Quarterly 31, no. 2 (1994): 119-131.

Williams, Sarah C.P. “News Feature: Capturing Cancer’s Complexity”, Proceedings of the National Academy of Sciences, 112, no. 15 (2015): 4509-4511.

Wray, K. Brad. “Rethinking Scientific Specialization”, Social Studies of Science 35. no. 1 (2005): 151-164.

Author Information: Amanda Bryant, Trent University, amandabryant@trentu.ca

Bryant, Amanda. “Each Kuhn Mutually Incommensurable.” Social Epistemology Review and Reply Collective 7, no. 6 (2018): 1-7.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3XM

Image by Denis Defreyne via Flickr / Creative Commons

 

This volume is divided into four parts, in which its contributors variously Question, Defend, Revise, or Abandon the Kuhnian image of science. One immediately wonders: what is this thing, the Kuhnian Image of Science? It isn’t a question that can be decisively or quickly settled, of course. Perhaps one of the reasons why so much has been written on Kuhn’s philosophy of science is that it gives rise to such rich interpretive challenges.

Informed general philosophy of science readers will of course know the tagline version of Kuhn’s view — namely, that the development of science unfolds in wholesale revolutions of scientific paradigms that are in some sense incommensurable with one another. However, one might think that whatever the image of science at issue in this volume is, it should be a sharper image than that.

Many Thomases Kuhn

But of course there isn’t really a single, substantive, cohesive, uncontroversial image at issue. Alexandra Argamakova rightly points out in her contribution, “there exist various images of science belonging to different Thomas Kuhns at different stages of his work life and from different perspectives of interpretation, so the target for current analysis turns out to be less detectable” (46). Rather, the contributors touch on various aspects of Kuhn’s philosophy, variously interpreted — and as such, multiple Kuhnian images emerge as the volume unfolds. That’s just as it should be. In fact, if the volume had propped up some caricature of Kuhn’s views as the Kuhnian image of science, it would have done a disservice both to Kuhn and to his many interpreters.

One wonders, too, whether the so-called Kuhnian image of science is really so broadly endorsed as to be the potential subject of (echoing Kuhn’s own phrase) a ‘decisive transformation’. In his introduction, Moti Mizrahi emphasizes Kuhn’s undeniable influence. Kuhn has, Mizrahi points out, literally tens of thousands of citations; numerous books, articles, and journal issues devoted to his work; and a lasting legacy in the language of academic and public discourse. While all of this signals influence, it’s clearly no indication of agreement.

To be fair, Mizrahi acknowledges the “fair share” of Kuhn critics (2). Nevertheless, if the prospect of decisively transforming the Kuhnian image of science were to be a serious prospect, then the image would have to be widely accepted and enjoy a lasting relevance. However, Argamakova again rightly emphasizes that Kuhn’s philosophy of science “never fully captured the intellectual market” (45) and “could not be less attractive for so many minds!” (47). Moreover, in a remarkable passage in his contribution, Howard Sankey describes a central component of the so-called Kuhnian image of science as as an old battlefield and a dead issue:

Returning to the topic from the perspective of the contemporary scene in the philosophy of science is like visiting a battlefield from a forgotten war. The positions of the warring sides may still be made out. But the battlefield is grown over with grass. One may find evidence of the fighting that once took place, perhaps bullet marks or shell holes. But the fighting ceased long ago. The battle is a thing of the past.

The problem of incommensurability is no longer a live issue. The present chapter has taken the form of a post-mortem examination of a once hotly debated but now largely forgotten problem from an earlier period in the philosophy of science. (87)

If the same holds true for the rest of the Kuhnian image (or images), then the volume isn’t exactly timely.

But dead philosophical issues don’t always stay dead. Or rather, we’re not always right to pronounce them dead. In 1984, Arthur Fine famously proclaimed scientific realism “well and truly dead” (in The Natural Ontological Attitude), and clearly he was quite wrong. At any rate, we may find interest in an issue, dead or not, and there is certainly much of it to be found in this volume. I have been asked to focus my comments on the second half of the book. As such, I will discuss the Introduction, as well as Parts I and II in brief, then I will discuss parts III and IV at greater length.

On the Incommensurable

In his Introduction, Mizrahi argues that, far from initiating a historical turn in the philosophy of science, Kuhn was ‘patient zero’ for anecdotiasis — “the tendency to use cherry-picked anecdotes or case studies… to support general claims (about the nature of science as a whole)” (3). Mizrahi argues that anecdotiasis is pervasive, since significant proportions of articles in the PhilSci-Archive and in leading philosophy of science journals contain the phrase ‘case study’.

But neither using the phrase ‘case study’ nor doing case studies is inherently or self-evidently problematic. Case studies can be interesting, informative, and evidential. Of course the challenges are not to ignore relevant problem cases, not to generalize hastily, and not to assign undue evidential weight to them. But if we are to suppose that all or most philosophers of science who use case studies fail to meet those challenges, we will need a substantial body of evidence.

Part I begins with Mizrahi’s contribution, which the successive contributions all engage. In it, he defines taxonomic incommensurability as conceptual incompatibility between new and old theories. Against those who claim that Kuhn ‘discovered’ incommensurability, Mizrahi argues that there are no good deductive or inductive arguments for taxonomic incommensurability. He cites just two authors, Eric Oberheim and Paul Hoyningen-Huene, who use the language of discovery to characterize incommensurability. As such, it isn’t clear that the assumption Mizrahi takes pains to reject is particularly widespread.

Nevertheless, even if everyone universally agreed that there are no legitimate cases of incommensurability, it would still be useful to know why they’d be justified in so thinking. So the work that Mizrahi does to establish his conclusion is valuable. He shows the dubious sorts of assumptions that arguments for the taxonomic incommensurability thesis would hang on.

Argamakova’s helpful and clear contribution lays out three general types of critique with respect to Kuhn’s view of scientific development — ambiguity, inaccuracy, and limitation — and raises, if tentatively, concerns about Kuhn’s universalist ambitions. She might have been more explicit with respect to the force and scope of her comments on universalism — in particular, whether she sees the flaws in Kuhn’s theory as ultimately stemming from his attempts at universal generalizations, and to what extent her concerns extend beyond Kuhn to general philosophy of science.

Seungbae Park advances several arguments in response to Kuhn’s incommensurability thesis. One such argument takes up Kuhn’s analogy in The Structure of Scientific Revolutions (henceforth Structure) between the development of science and the evolution of organisms. Park suggests that in drawing the analogy, Kuhn illicitly assumes the truth of evolutionary theory. He doesn’t consider that Kuhn could adopt the language of a paradigm (for the purposes of drawing an analogy, no less!) without committing to the literal truth of that paradigm.

Park also claims that “it is self-defeating for Kuhn to invoke a scientific theory to give an account of science that discredits scientific claims” (66), when it’s not clear that the analogy is at all integral to Kuhn’s account. Kuhn could, for instance, have ascribed the same characteristics to theory change without referring to evolutionary theory at all.

Sankey’s illuminating contribution fills in the interpretive background on incommensurability — the semantic version of Kuhn’s incommensurability thesis, in particular. He objects, with Mizrahi, to the language of discovery used by Oberheim and Hoyningen-Huene with respect to incommensurability. He argues, convincingly, that the purported paradigm shift that allowed Kuhn to finally comprehend Aristotle’s physics isn’t a case of incommensurability, but rather of comprehension after an initial failure to understand. While this doesn’t establish his conclusion that no cases of incommensurability have been established (76), it does show that a historically significant purported case is not genuine.

Vasso Kindi fills in some historical detail regarding the positivist image of science that Kuhn sought to replace and the “stereotypical” image attributed to him (96). She argues that Kuhn’s critics (including by implication several of her co-contributors) frequently attack a strawman — that, notwithstanding Kuhn’s avowed deference to history, the Kuhnian image of science is not meant to be a historical representation, and so doesn’t need to be supported by historical evidence. It is, rather, a “a philosophical model that was used to challenge an ideal image of science” (95).

Finally, Lydia Patton emphasizes the practical dimension of Kuhn’s conception of paradigms in Structure. It ought to be uncontroversial that on Kuhn’s early characterization a paradigm is not merely a theory, but a series of epistemic, evaluative, and methodological practices, too. But Patton argues that there has been too strong a semantic tendency in the treatment of Kuhnian paradigms (including by the later Kuhn himself). She argues for the greater interest and value of a practical lens on Kuhn’s project for the purposes of understanding and explaining science.

Vectors of Glory

Andrew Aberdein’s contribution deals with the longstanding and intriguing question of whether there are revolutions in mathematics. He imports to that discussion distinctions he drew in previous work among so-called glorious, inglorious, and paraglorious revolutions, in which, respectively, key components of the theory are preserved, lost, or preserved with new additions. Key components are, he says, “at least all components without which the theory could not be articulated” (136).

He discusses several examples of key shifts in mathematical theory and practice that putatively exemplify certain of these classes of revolution. The strength of the paper is its fascinating examples, particularly the example of Inter-Universal Teichmüller theory, which, Aberdein explains, introduces such novel techniques and concepts that some leading mathematicians say its proofs read as if they were “from the future, or from outer space” (145).

Aberdein doesn’t falsely advertise his thesis. He acknowledges that “it is not easy to determine whether a given episode is revolutionary” (140), and claims only that certain shifts “may be understood” as revolutionary (149) — that the cases he offers are putative mathematical revolutions. As to how we should go about identifying putative mathematical revolutions, Aberdein suggests we look directly for conceptual shifts (or ‘sorites-like’ sequences of shifts) in which key components have been lost or gained.

A fuller discussion of these diagnostics is needed, since the judgment of whether there are revolutions (genuine or putative) in mathematics will hang largely on diagnostics such as these. Is any key conceptual shift sufficient? If so, have we really captured the spirit of Kuhn’s view, given that Kuhn seems to ascribe a certain momentousness to revolutions? If the conceptual shift has to be substantial, how substantial, and how should we gauge its substantiality? Without some principled, non-arbitrary, and non-question-begging standards for what counts as a revolution, we cannot hope to give a serious answer to the question of whether there are, even putatively, revolutions in mathematics.

The paper would also have benefited from a more explicit discussion of what a mathematical paradigm is in the first place, especially as compared to a scientific one. We can infer from Aberdein’s examples that conceptions of number, ratio, proportion, as well as systems of conjecture and mathematical techniques belong to mathematical paradigms — but explicit comment on this would have been beneficial.

Moreover, Aberdein sees an affinity between mathematics and science, commenting toward the end of the paper that the methodology of mathematics is not so different from that of science, and that “the story we tell about revolutions [should] hold for both science and mathematics” (149). These are loaded comments needing further elaboration.

The Evolution of Thomas Kuhn

In his contribution, James Marcum argues that Kuhn’s later evolutionary view is more relevant to current philosophy of science (being ‘pluralistic and perspectival’) than his earlier revolutionary one. On Kuhn’s later evolutionary view, Marcum explains, scientific change proceeds via “smaller evolutionary specialization or speciation” (155), with a “gradual emergence of a specialty’s practice and knowledge” (159). On this view, scientific development consists in “small incremental changes of belief” rather than “the upheaval of world-shattering revolutions” (159).

Marcum uses the emergence of bacteriology, virology, and retrovirology to illustrate the strengths and weaknesses of Kuhn’s evolutionary view. Its main strength, he says, is that it illuminates the development of and relationships among these sorts of scientific specialties; its weakness is that it ascribes a single tempo — Darwinian gradualism — and a single mode — speciation — to the evolution of science. Marcum adopts George Gaylord Simpson’s “richer and more textured approach” (165), which distinguishes several tempos and modes. Since these refinements better enable Kuhn’s view to handle a range of cases, they are certainly valuable.

According to Marcum, current philosophy of science is ‘pluralistic and perspectival’ in its recognition that different sciences face different philosophical issues and in its inclusion of perspectives from outside the logico-analytic tradition, such as continental, pragmatist, and feminist perspectives (166). Marcum seems right to characterize current philosophy of science as pluralistic, given the move away from general philosophy of science to more specialized branches.

If this pluralism is to be embraced, one might wonder what role (if any) remains for general philosophy of science. Marcum makes the interesting suggestion that a general image of science, like Kuhn’s evolutionary image, while respecting our contemporary pluralistic stance, can at the same time offer “a type of unity among the sciences, not in terms of reducing them to one science, but rather with respect to mapping the conceptual relationships among them” (169).

One of Marcum’s central aims is to show that incommensurability plays a key explanatory role in a refined version of Kuhn’s evolutionary image of science. The role of incommensurability on this view is to account for scientific speciation. However, Marcum shows only that we can characterize scientific speciation in terms of incommensurability, without clearly establishing the explanatory payoff of so doing. He does not succeed in showing that incommensurability has a particularly enriching explanatory role, much less that incommensurability is “critical for conceptual evolution within the sciences” or “an essential component of… the growth of science” (168).

All a Metaphor?

Barbara Gabriella Renzi and Giulio Napolitano frame their contribution with a discussion of competing accounts of the nature and role of metaphor. They avow the commonly accepted view that metaphors are not merely linguistic, but cognitive, and that they are ubiquitous. They claim, I would think uncontroversially, that metaphors shape how individuals approach and reason about complex issues. They also discuss historical empiricist attitudes toward metaphor, competing views on the role of models and metaphor in science, and later, the potential role of metaphor in social domination.

Renzi and Napolitano also address Kuhn’s use of the metaphor of Darwinian evolution to characterize scientific change. They suggest that an apter metaphor for scientific change can be made of the obsolete orthogenetic hypothesis, according to which “variations are not random but directed by forces regulated and ultimately directed by the internal constitution of the organism, which responds to environmental stimuli” (184).

The orthogenetic metaphor is a better fit for scientific change, they argue, because the emergence of new ideas in science is not random, but driven by “arguments and debates… specific needs of a scientist or group of scientists who have been seeking a solution to a problem” (184).

The orthogenetic metaphor effectively highlights a drawback of the Darwinian metaphor that might otherwise be overlooked, and deserves further attention. The space devoted to discussing metaphor in the abstract contributes little to the paper, beyond prescriptions to take metaphor seriously and approach it with caution. Much of that space would have been better devoted to using historical examples to compare Kuhn’s Darwinian metaphor to the proposed orthogenetic alternative, to make concrete the fruitfulness of the latter, and to flesh out the specific kinds of internal and external pressures that Renzi and Napolitano see as important drivers of scientific change.

Methodological Contextualism

Darrell Rowbottom offers a summary and several criticisms of what he sees as Kuhn’s early-middle period image of science. By way of criticism, he points out that it isn’t clear how to individuate disciplinary matrices in a way that preserves a clear distinction between normal and extraordinary science, or ensures that what Kuhn calls ‘normal science’ is really the norm. Moreover, in linking the descriptive and normative components of his view, Kuhn implausibly assumes that mature science is optimal.

Rowbottom suggests a replacement image of science he calls methodological contextualism (developed more fully in previous work). Methodological contextualism identifies several roles — puzzle-solving, critical, and imaginative — which scientific practitioners fulfill to varying degrees and in varying combinations. The ideal balance of these roles depends on contextual factors, including the scientists available and the state of science (200).

The novel question Rowbottom considers in this paper is: how could piecemeal change in science be rational from the perspective of methodological contextualism? I have difficulty seeing why this is even a prima facie problem for Rowbottom’s view, since puzzle-solving, critical and imaginative activities are clearly consonant with piecemeal change. I suppose it is because the view retains some of Kuhn’s machinery, including his notion of a disciplinary matrix.

At any rate, Rowbottom suggests that scientists may work within a partial disciplinary matrix, or a set of partially overlapping ones. He also makes the intriguing claim that “scientists might allow inconsistency at the global level, and even welcome it as a better alternative than a consistent system with less puzzle-solving power” (202). One might object that Kuhn’s incommensurability thesis seems to block the overlapping matrix move, but Rowbottom proclaims that the falsity of Kuhn’s incommensurability thesis follows “as a consequence of the way that piecemeal change can occur” (201). One person’s modus ponens is another’s modus tollens, as they say.

A Digestible Kuhn

The brevity of the contributions makes them eminently digestible and good potential additions to course syllabi at a range of levels; on the other hand, it means that some of the most provocative and topical themes of the book — such as the epistemic and methodological status of generalizations about science and the role of general philosophy of science in contemporary philosophy — don’t get the full development they deserve. The volume raises more questions than it satisfactorily addresses, but several of them bring renewed relevance and freshness to Kuhnian philosophy of science and ought to direct its future course.

Contact details: amandabryant@trentu.ca

References

Mizrahi, Moti (Ed.) The Kuhnian Image of Science: Time for a Decisive Transformation? Lanham, MD: Rowman & Littlefield, 2018.

Author information: Moti Mizrahi, Florida Institute of Technology, mmizrahi@fit.edu

Mizrahi, Moti. “More in Defense of Weak Scientism: Another Reply to Brown.” Social Epistemology Review and Reply Collective 7, no. 4 (2018): 7-25.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3W1

Please refer to:

Image by eltpics via Flickr / Creative Commons

 

In my (2017a), I defend a view I call Weak Scientism, which is the view that knowledge produced by scientific disciplines is better than knowledge produced by non-scientific disciplines.[1] Scientific knowledge can be said to be quantitatively better than non-scientific knowledge insofar as scientific disciplines produce more impactful knowledge–in the form of scholarly publications–than non-scientific disciplines (as measured by research output and research impact). Scientific knowledge can be said to be qualitatively better than non-scientific knowledge insofar as such knowledge is explanatorily, instrumentally, and predictively more successful than non-scientific knowledge.

Brown (2017a) raises several objections against my defense of Weak Scientism and I have replied to his objections (Mizrahi 2017b), thereby showing again that Weak Scientism is a defensible view. Since then, Brown (2017b) has reiterated his objections in another reply on SERRC. Almost unchanged from his previous attack on Weak Scientism (Brown 2017a), Brown’s (2017b) objections are the following:

  1. Weak Scientism is not strong enough to count as scientism.
  2. Advocates of Strong Scientism should not endorse Weak Scientism.
  3. Weak Scientism does not show that philosophy is useless.
  4. My defense of Weak Scientism appeals to controversial philosophical assumptions.
  5. My defense of Weak Scientism is a philosophical argument.
  6. There is nothing wrong with persuasive definitions of scientism.

In what follows, I will respond to these objections, thereby showing once more that Weak Scientism is a defensible view. Since I have been asked to keep this as short as possible, however, I will try to focus on what I take to be new in Brown’s (2017b) latest attack on Weak Scientism.

Is Weak Scientism Strong Enough to Count as Scientism?

Brown (2017b) argues for (1) on the grounds that, on Weak Scientism, “philosophical knowledge may be nearly as valuable as scientific knowledge.” Brown (2017b, 4) goes on to characterize a view he labels “Scientism2,” which he admits is the same view as Strong Scientism, and says that “there is a huge logical gap between Strong Scientism (Scientism2) and Weak Scientism.”

As was the case the first time Brown raised this objection, it is not clear how it is supposed to show that Weak Scientism is not “really” a (weaker) version of scientism (Mizrahi 2017b, 10-11). Of course there is a logical gap between Strong Scientism and Weak Scientism; that is why I distinguish between these two epistemological views. If I am right, Strong Scientism is too strong to be a defensible version of scientism, whereas Weak Scientism is a defensible (weaker) version of scientism (Mizrahi 2017a, 353-354).

Of course Weak Scientism “leaves open the possibility that there is philosophical knowledge” (Brown 2017b, 5). If I am right, such philosophical knowledge would be inferior to scientific knowledge both quantitatively (in terms of research output and research impact) and qualitatively (in terms of explanatory, instrumental, and predictive success) (Mizrahi 2017a, 358).

Brown (2017b, 5) does try to offer a reason “for thinking it strange that Weak Scientism counts as a species of scientism” in his latest attack on Weak Scientism, which does not appear in his previous attack. He invites us to imagine a theist who believes that “modern science is the greatest new intellectual achievement since the fifteenth century” (emphasis in original). Brown then claims that this theist would be an advocate of Weak Scientism because Brown (2017b, 6) takes “modern science is the greatest new intellectual achievement since the fifteenth century” to be “(roughly) equivalent to Weak Scientism.” For Brown (2017b, 6), however, “it seems odd, to say the least, that [this theist] should count as an advocate (even roughly) of scientism.”

Unfortunately, Brown’s appeal to intuition is rather difficult to evaluate because his hypothetical case is under-described.[2] First, the key phrase, namely, “modern science is the greatest new intellectual achievement since the fifteenth century,” is vague in more ways than one. I have no idea what “greatest” is supposed to mean here. Greatest in what respects? What are the other “intellectual achievements” relative to which science is said to be “the greatest”?

Also, what does “intellectual achievement” mean here? There are multiple accounts and literary traditions in history and philosophy of science, science studies, and the like on what counts as “intellectual achievements” or progress in science (Mizrahi 2013b). Without a clear understanding of what these key phrases mean here, it is difficult to tell how Brown’s intuition about this hypothetical case is supposed to be a reason to think that Weak Scientism is not “really” a (weaker) version of scientism.

Toward the end of his discussion of (1), Brown says something that suggests he actually has an issue with the word ‘scientism’. Brown (2017b, 6) writes, “perhaps Mizrahi should coin a new word for the position with respect to scientific knowledge and non-scientific forms of academic knowledge he wants to talk about” (emphasis in original). It should be clear, of course, that it does not matter what label I use for the view that “Of all the knowledge we have, scientific knowledge is the best knowledge” (Mizrahi 2017a, 354; emphasis in original). What matters is the content of the view, not the label.

Whether Brown likes the label or not, Weak Scientism is a (weaker) version of scientism because it is the view that scientific ways of knowing are superior (in certain relevant respects) to non-scientific ways of knowing, whereas Strong Scientism is the view that scientific ways of knowing are the only ways of knowing. As I have pointed out in my previous reply to Brown, whether scientific ways of knowing are superior to non-scientific ways of knowing is essentially what the scientism debate is all about (Mizrahi 2017b, 13).

Before I conclude this discussion of (1), I would like to point out that Brown seems to have misunderstood Weak Scientism. He (2017b, 3) claims that “Weak Scientism is a normative and not a descriptive claim.” This is a mistake. As a thesis (Peels 2017, 11), Weak Scientism is a descriptive claim about scientific knowledge in comparison to non-scientific knowledge. This should be clear provided that we keep in mind what it means to say that scientific knowledge is better than non-scientific knowledge. As I have argued in my (2017a), to say that scientific knowledge is quantitatively better than non-scientific knowledge is to say that there is a lot more scientific knowledge than non-scientific knowledge (as measured by research output) and that the impact of scientific knowledge is greater than that of non-scientific knowledge (as measured by research impact).

To say that scientific knowledge is qualitatively better than non-scientific knowledge is to say that scientific knowledge is explanatorily, instrumentally, and predictively more successful than non-scientific knowledge. All these claims about the superiority of scientific knowledge to non-scientific knowledge are descriptive, not normative, claims. That is to say, Weak Scientism is the view that, as a matter of fact, knowledge produced by scientific fields of study is quantitatively (in terms of research output and research impact) and qualitatively (in terms of explanatory, instrumental, and predictive success) better than knowledge produced by non-scientific fields of study.

Of course, Weak Scientism does have some normative implications. For instance, if scientific knowledge is indeed better than non-scientific knowledge, then, other things being equal, we should give more evidential weight to scientific knowledge than to non-scientific knowledge. For example, suppose that I am considering whether to vaccinate my child or not. On the one hand, I have scientific knowledge in the form of results from clinical trials according to which MMR vaccines are generally safe and effective.

On the other hand, I have knowledge in the form of stories about children who were vaccinated and then began to display symptoms of autism. If Weak Scientism is true, and I want to make a decision based on the best available information, then I should give more evidential weight to the scientific knowledge about MMR vaccines than to the anecdotal knowledge about MMR vaccines simply because the former is scientific (i.e., knowledge obtained by means of the methods of science, such as clinical trials) and the latter is not.

Should Advocates of Strong Scientism Endorse Weak Scientism?

Brown (2017b, 7) argues for (2) on the grounds that “once the advocate of Strong Scientism sees that an advocate of Weak Scientism admits the possibility that there is real knowledge other than what is produced by the natural sciences […] the advocate of Strong Scientism, at least given their philosophical presuppositions, will reject Weak Scientism out of hand.” It is not clear which “philosophical presuppositions” Brown is talking about here. Brown quotes Rosenberg (2011, 20), who claims that physics tells us what reality is like, presumably as an example of a proponent of Strong Scientism who would not endorse Weak Scientism. But it is not clear why Brown thinks that Rosenberg would “reject Weak Scientism out of hand” (Brown 2017d, 7).

Like other proponents of scientism, Rosenberg should endorse Weak Scientism because, unlike Strong Scientism, Weak Scientism is a defensible view. Insofar as we should endorse the view that has the most evidence in its favor, Weak Scientism has more going for it than Strong Scientism does. For to show that Strong Scientism is true, one would have to show that no field of study other than scientific ones can produce knowledge. Of course, that is not easy to show. To show that Weak Scientism is true, one only needs to show that the knowledge produced in scientific fields of study is better (in certain relevant respects) than the knowledge produced in non-scientific fields.

That is precisely what I show in my (2017a). I argue that the knowledge produced in scientific fields is quantitatively better than the knowledge produced in non-scientific fields because there is a lot more scientific knowledge than non-scientific knowledge (as measured by research output) and the former has a greater impact than the latter (as measured by research impact). I also argue that the knowledge produced in scientific fields is qualitatively better than knowledge produced in non-scientific fields because it is more explanatorily, instrumentally, and predictively successful.

Contrary to what Brown (2017b, 7) seems to think, I do not have to show “that there is real knowledge other than scientific knowledge.” To defend Weak Scientism, all I have to show is that scientific knowledge is better (in certain relevant respects) than non-scientific knowledge. If anyone must argue for the claim that there is real knowledge other than scientific knowledge, it is Brown, for he wants to defend the value or usefulness of non-scientific knowledge, specifically, philosophical knowledge.

It is important to emphasize the point about the ways in which scientific knowledge is quantitatively and qualitatively better than non-scientific knowledge because it looks like Brown has confused the two. For he thinks that I justify my quantitative analysis of scholarly publications in scientific and non-scientific fields by “citing the precedent of epistemologists who often treat all items of knowledge as qualitatively the same” (Brown 2017b, 22; emphasis added).

Here Brown fails to carefully distinguish between my claim that scientific knowledge is quantitatively better than non-scientific knowledge and my claim that scientific knowledge is qualitatively better than non-scientific knowledge. For the purposes of a quantitative study of knowledge, information and data scientists can do precisely what epistemologists do and “abstract from various circumstances (by employing variables)” (Brown 2017b, 22) in order to determine which knowledge is quantitatively better.

How Is Weak Scientism Relevant to the Claim that Philosophy Is Useless?

Brown (2017b, 7-8) argues for (3) on the grounds that “Weak Scientism itself implies nothing about the degree to which philosophical knowledge is valuable or useful other than stating scientific knowledge is better than philosophical knowledge” (emphasis in original).

Strictly speaking, Brown is wrong about this because Weak Scientism does imply something about the degree to which scientific knowledge is better than philosophical knowledge. Recall that to say that scientific knowledge is quantitatively better than non-scientific knowledge is to say that scientific fields of study publish more research and that scientific research has greater impact than the research published in non-scientific fields of study.

Contrary to what Brown seems to think, we can say to what degree scientific research is superior to non-scientific research in terms of output and impact. That is precisely what bibliometric indicators like h-index and other metrics are for (Rousseau et al. 2018). Such bibliometric indicators allow us to say how many articles are published in a given field, how many of those published articles are cited, and how many times they are cited. For instance, according to Scimago Journal & Country Rank (2018), which contains data from the Scopus database, of the 3,815 Philosophy articles published in the United States in 2016-2017, approximately 14% are cited, and their h-index is approximately 160.

On the other hand, of the 24,378 Psychology articles published in the United States in 2016-2017, approximately 40% are cited, and their h-index is approximately 640. Contrary to what Brown seems to think, then, we can say to what degree research in Psychology is better than research in Philosophy in terms of research output (i.e., number of publications) and research impact (i.e., number of citations). We can use the same bibliometric indicators and metrics to compare research in other scientific and non-scientific fields of study.

As I have already said in my previous reply to Brown, “Weak Scientism does not entail that philosophy is useless” and “I have no interest in defending the charge that philosophy is useless” (Mizrahi 2017b, 11-12). So, I am not sure why Brown brings up (3) again. Since he insists, however, let me explain why philosophers who are concerned about the charge that philosophy is useless should engage with Weak Scientism as well.

Suppose that a foundation or agency is considering whether to give a substantial grant to one of two projects. The first project is that of a philosopher who will sit in her armchair and contemplate the nature of friendship.[3] The second project is that of a team of social scientists who will conduct a longitudinal study of the effects of friendship on human well-being (e.g., Yang et al. 2016).

If Weak Scientism is true, and the foundation or agency wants to fund the project that is likely to yield better results, then it should give the grant to the team of social scientists rather than to the armchair philosopher simply because the former’s project is scientific, whereas the latter’s is not. This is because the scientific project will more likely yield better knowledge than the non-scientific project will. In other words, unlike the project of the armchair philosopher, the scientific project will probably produce more research (i.e., more publications) that will have a greater impact (i.e., more citations) and the knowledge produced will be explanatorily, instrumentally, and predictively more successful than any knowledge that the philosopher’s project might produce.

This example should really hit home for Brown, since reading his latest attack on Weak Scientism gives one the impression that he thinks of philosophy as a personal, “self-improvement” kind of enterprise, rather than an academic discipline or field of study. For instance, he seems to be saying that philosophy is not in the business of producing “new knowledge” or making “discoveries” (Brown 2017b, 17).

Rather, Brown (2017b, 18) suggests that philosophy “is more about individual intellectual progress rather than collective intellectual progress.” Individual progress or self-improvement is great, of course, but I am not sure that it helps Brown’s case in defense of philosophy against what he sees as “the menace of scientism.” For this line of thinking simply adds fuel to the fire set by those who want to see philosophy burn. As I point out in my (2017a), scientists who dismiss philosophy do so because they find it academically useless.

For instance, Hawking and Mlodinow (2010, 5) write that ‘philosophy is dead’ because it ‘has not kept up with developments in science, particularly physics’ (emphasis added). Similarly, Weinberg (1994, 168) says that, as a working scientist, he ‘finds no help in professional philosophy’ (emphasis added). (Mizrahi 2017a, 356)

Likewise, Richard Feynman is rumored to have said that “philosophy of science is about as useful to scientists as ornithology is to birds” (Kitcher 1998, 32). It is clear, then, that what these scientists complain about is professional or academic philosophy. Accordingly, they would have no problem with anyone who wants to pursue philosophy for the sake of “individual intellectual progress.” But that is not the issue here. Rather, the issue is academic knowledge or research.

Does My Defense of Weak Scientism Appeal to Controversial Philosophical Assumptions?

Brown (2017b, 9) argues for (4) on the grounds that I assume that “we are supposed to privilege empirical (I read Mizrahi’s ‘empirical’ here as ‘experimental/scientific’) evidence over non-empirical evidence.” But that is question-begging, Brown claims, since he takes me to be assuming something like the following: “If the question of whether scientific knowledge is superior to [academic] non-scientific knowledge is a question that one can answer empirically, then, in order to pose a serious challenge to my [Mizrahi’s] defense of Weak Scientism, Brown must come up with more than mere ‘what ifs’” (Mizrahi 2017b, 10; quoted in Brown 2017b, 8).

This objection seems to involve a confusion about how defeasible reasoning and defeating evidence are supposed to work. Given that “a rebutting defeater is evidence which prevents E from justifying belief in H by supporting not-H in a more direct way” (Kelly 2016), claims about what is actual cannot be defeated by mere possibilities, since claims of the form “Possibly, p” do not prevent a piece of evidence from justifying belief in “Actually, p” by supporting “Actually, not-p” directly.

For example, the claim “Hillary Clinton could have been the 45th President of the United States” does not prevent my perceptual and testimonial evidence from justifying my belief in “Donald Trump is the 45th President of the United States,” since the former does not support “It is not the case that Donald Trump is the 45th President of the United States” in a direct way. In general, claims of the form “Possibly, p” are not rebutting defeaters against claims of the form “Actually, p.” Defeating evidence against claims of the form “Actually, p” must be about what is actual (or at least probable), not what is merely possible, in order to support “Actually, not-p” directly.

For this reason, although “the production of some sorts of non-scientific knowledge work may be harder than the production of scientific knowledge” (Brown 2017b, 19), Brown gives no reasons to think that it is actually or probably harder, which is why this possibility does nothing to undermine the claim that scientific knowledge is actually better than non-scientific knowledge. Just as it is possible that philosophical knowledge is harder to produce than scientific knowledge, it is also possible that scientific knowledge is harder to produce than philosophical knowledge. It is also possible that scientific and non-scientific knowledge are equally hard to produce.

Similarly, the possibility that “a little knowledge about the noblest things is more desirable than a lot of knowledge about less noble things” (Brown 2017b, 19), whatever “noble” is supposed to mean here, does not prevent my bibliometric evidence (in terms of research output and research impact) from justifying the belief that scientific knowledge is better than non-scientific knowledge. Just as it is possible that philosophical knowledge is “nobler” (whatever that means) than scientific knowledge, it is also possible that scientific knowledge is “nobler” than philosophical knowledge or that they are equally “noble” (Mizrahi 2017b, 9-10).

In fact, even if Brown (2017a, 47) is right that “philosophy is harder than science” and that “knowing something about human persons–particularly qua embodied rational being–is a nobler piece of knowledge than knowing something about any non-rational object” (Brown 2017b, 21), whatever “noble” is supposed to mean here, it would still be the case that scientific fields produce more knowledge (as measured by research output), and more impactful knowledge (as measured by research impact), than non-scientific disciplines.

So, I am not sure why Brown keeps insisting on mentioning these mere possibilities. He also seems to forget that the natural and social sciences study human persons as well. Even if knowledge about human persons is “nobler” (whatever that means), there is a lot of scientific knowledge about human persons coming from scientific fields, such as anthropology, biology, genetics, medical science, neuroscience, physiology, psychology, and sociology, to name just a few.

One of the alleged “controversial philosophical assumptions” that my defense of Weak Scientism rests on, and that Brown (2017a) complains about the most in his previous attack on Weak Scientism, is my characterization of philosophy as the scholarly work that professional philosophers do. In my previous reply, I argue that Brown is not in a position to complain that this is a “controversial philosophical assumption,” since he rejects my characterization of philosophy as the scholarly work that professional philosophers produce, but he does not tell us what counts as philosophical (Mizrahi 2017b, 13). Well, it turns out that Brown does not reject my characterization of philosophy after all. For, after he was challenged to say what counts as philosophical, he came up with the following “sufficient condition for pieces of writing and discourse that count as philosophy” (Brown 2017b, 11):

(P) Those articles published in philosophical journals and what academics with a Ph.D. in philosophy teach in courses at public universities with titles such as Introduction to Philosophy, Metaphysics, Epistemology, Normative Ethics, and Philosophy of Science (Brown 2017b, 11; emphasis added).

Clearly, this is my characterization of philosophy in terms of the scholarly work that professional philosophers produce. Brown simply adds teaching to it. Since he admits that “scientists teach students too” (Brown 2017b, 18), however, it is not clear how adding teaching to my characterization of philosophy is supposed to support his attack on Weak Scientism. In fact, it may actually undermine his attack on Weak Scientism, since there is a lot more teaching going on in STEM fields than in non-STEM fields.

According to data from the National Center for Education Statistics (2017), in the 2015-16 academic year, post-secondary institutions in the United States conferred only 10,157 Bachelor’s degrees in philosophy and religious studies compared to 113,749 Bachelor’s degrees in biological and biomedical sciences, 106,850 Bachelor’s degrees in engineering, and 117,440 in psychology. In general, in the 2015-2016 academic year, 53.3% of the Bachelor’s degrees conferred by post-secondary institutions in the United States were degrees in STEM fields, whereas only 5.5% of conferred Bachelor’s degrees were in the humanities (Figure 1).

Figure 1. Bachelor’s degrees conferred by post-secondary institutions in the US, by field of study, 2015-2016 (Source: NCES)

 

Clearly, then, there is a lot more teaching going on in science than in philosophy (or even in the humanities in general), since a lot more students take science courses and graduate with degrees in scientific fields of study. So, even if Brown is right that we should include teaching in what counts as philosophy, it is still the case that scientific fields are quantitatively better than non-scientific fields.

Since Brown (2017b, 13) seems to agree that philosophy (at least in part) is the scholarly work that academic philosophers produce, it is peculiar that he complains, without argument, that “an understanding of philosophy and knowledge as operational is […] shallow insofar as philosophy and knowledge can’t fit into the narrow parameters of another empirical study.” Once Brown (2017b, 11) grants that “Those articles published in philosophical journals” count as philosophy, he thereby also grants that these journal articles can be studied empirically using the methods of bibliometrics, information science, or data science.

That is, Brown (2017b, 11) concedes that philosophy consists (at least in part) of “articles published in philosophical journals,” and so these articles can be compared to other articles published in science journals to determine research output, and they can also be compared to articles published in science journals in terms of citation counts to determine research impact. What exactly is “shallow” about that? Brown does not say.

A, perhaps unintended, consequence of Brown’s (P) is that the “great thinkers from the past” (Brown 2017b, 18), those that Brown (2017b, 13) likes to remind us “were not professional philosophers,” did not do philosophy, by Brown’s own lights. For “Socrates, Plato, Augustine, Descartes, Locke, and Hume” (Brown 2017b, 13) did not publish in philosophy journals, were not academics with a Ph.D. in philosophy, and did not teach at public universities courses “with titles such as Introduction to Philosophy, Metaphysics, Epistemology, Normative Ethics, and Philosophy of Science” (Brown 2017b, 11).

Another peculiar thing about Brown’s (P) is the restriction of the philosophical to what is being taught in public universities. What about community colleges and private universities? Is Brown suggesting that philosophy courses taught at private universities do not count as philosophy courses? This is peculiar, especially in light of the fact that, at least according to The Philosophical Gourmet Report (Brogaard and Pynes 2018), the top ranked philosophy programs in the United States are mostly located in private universities, such as New York University and Princeton University.

Is My Defense of Weak Scientism a Scientific or a Philosophical Argument?

Brown argues for (5) on the grounds that my (2017a) is published in a philosophy journal, namely, Social Epistemology, and so it a piece of philosophical knowledge by my lights, since I count as philosophy the research articles that are published in philosophy journals.

Brown would be correct about this if Social Epistemology were a philosophy journal. But it is not. Social Epistemology: A Journal of Knowledge, Culture and Policy is an interdisciplinary journal. The journal’s “aim and scope” statement makes it clear that Social Epistemology is an interdisciplinary journal:

Social Epistemology provides a forum for philosophical and social scientific enquiry that incorporates the work of scholars from a variety of disciplines who share a concern with the production, assessment and validation of knowledge. The journal covers both empirical research into the origination and transmission of knowledge and normative considerations which arise as such research is implemented, serving as a guide for directing contemporary knowledge enterprises (Social Epistemology 2018).

The fact that Social Epistemology is an interdisciplinary journal, with contributions from “Philosophers, sociologists, psychologists, cultural historians, social studies of science researchers, [and] educators” (Social Epistemology 2018) would not surprise anyone who is familiar with the history of the journal. The founding editor of the journal is Steve Fuller, who was trained in an interdisciplinary field, namely, History and Philosophy of Science (HPS), and is currently the Auguste Comte Chair in Social Epistemology in the Department of Sociology at Warwick University. Brown (2017b, 15) would surely agree that sociology is not philosophy, given that, for him, “cataloguing what a certain group of people believes is sociology and not philosophy.” The current executive editor of the journal is James H. Collier, who is a professor of Science and Technology in Society at Virginia Tech, and who was trained in Science and Technology Studies (STS), which is an interdisciplinary field as well.

Brown asserts without argument that the methods of a scientific field of study, such as sociology, are different in kind from those of philosophy: “What I contend is that […] philosophical methods are different in kind from those of the experimental scientists [sciences?]” (Brown 2017b, 24). He then goes on to speculate about what it means to say that an explanation is testable (Brown 2017b, 25). What Brown comes up with is rather unclear to me. For instance, I have no idea what it means to evaluate an explanation by inductive generalization (Brown 2017b, 25).

Instead, Brown should have consulted any one of the logic and reasoning textbooks I keep referring to in my (2017a) and (2017b) to find out that it is generally accepted among philosophers that the good-making properties of explanations, philosophical and otherwise, include testability among other good-making properties (see, e.g., Sinnott-Armstrong and Fogelin 2010, 257). As far as testability is concerned, to test an explanation or hypothesis is to determine “whether predictions that follow from it are true” (Salmon 2013, 255). In other words, “To say that a hypothesis is testable is at least to say that some prediction made on the basis of that hypothesis may confirm or disconfirm it” (Copi et al. 2011, 515).

For this reason, Feser’s analogy according to which “to compare the epistemic values of science and philosophy and fault philosophy for not being good at making testable predications [sic] is like comparing metal detectors and gardening tools and concluding gardening tools are not as good as metal detectors because gardening tools do not allow us to successfully detect for metal” (Brown 2017b, 25), which Brown likes to refer to (Brown 2017a, 48), is inapt.

It is not an apt analogy because, unlike metal detectors and gardening tools, which serve different purposes, both science and philosophy are in the business of explaining things. Indeed, Brown admits that, like good scientific explanations, “good philosophical theories explain things” (emphasis in original). In other words, Brown admits that both scientific and philosophical theories are instruments of explanation (unlike gardening and metal-detecting instruments). To provide good explanations, then, both scientific and philosophical theories must be testable (Mizrahi 2017b, 19-20).

What Is Wrong with Persuasive Definitions of Scientism?

Brown (2017b, 31) argues for (6) on the grounds that “persuasive definitions are [not] always dialectically pernicious.” He offers an argument whose conclusion is “abortion is murder” as an example of an argument for a persuasive definition of abortion. He then outlines an argument for a persuasive definition of scientism according to which “Weak Scientism is a view that has its advocates putting too high a value on scientific knowledge” (Brown 2017b, 32).

The problem, however, is that Brown is confounding arguments for a definition with the definition itself. Having an argument for a persuasive definition does not change the fact that it is a persuasive definition. To illustrate this point, let me give an example that I think Brown will appreciate. Suppose I define theism as an irrational belief in the existence of God. That is, “theism” means “an irrational belief in the existence of God.” I can also provide an argument for this definition:

P1: If it is irrational to have paradoxical beliefs and God is a paradoxical being, then theism is an irrational belief in the existence of God.

P2: It is irrational to have paradoxical beliefs and God is a paradoxical being (e.g., the omnipotence paradox).[4]

Therefore,

C: Theism is an irrational belief in the existence of God.

But surely, theists will complain that my definition of theism is a “dialectically pernicious” persuasive definition. For it stacks the deck against theists. It states that theists are already making a mistake, by definition, simply by believing in the existence of God. Even though I have provided an argument for this persuasive definition of theism, my definition is still a persuasive definition of theism, and my argument is unlikely to convince anyone who doesn’t already think that theism is irrational. Indeed, Brown (2017b, 30) himself admits that much when he says “good luck with that project!” about trying to construct a sound argument for “abortion is murder.” I take this to mean that pro-choice advocates would find his argument for “abortion is murder” dialectically inert precisely because it defines abortion in a manner that transfers “emotive force” (Salmon 2013, 65), which they cannot accept.

Likewise, theists would find the argument above dialectically inert precisely because it defines theism in a manner that transfers “emotive force” (Salmon 2013, 65), which they cannot accept. In other words, Brown seems to agree that there are good dialectical reasons to avoid appealing to persuasive definitions. Therefore, like “abortion is murder,” “theism is an irrational belief in the existence of God,” and “‘Homosexual’ means ‘one who has an unnatural desire for those of the same sex’” (Salmon 2013, 65), “Weak Scientism is a view that has its advocates putting too high a value on scientific knowledge” (Brown 2017b, 32) is a “dialectically pernicious” persuasive definition (cf. Williams 2015, 14).

Like persuasive definitions in general, it “masquerades as an honest assignment of meaning to a term while condemning or blessing with approval the subject matter of the definiendum” (Hurley 2015, 101). As I have pointed out in my (2017a), the problem with such definitions is that they “are strategies consisting in presupposing an unaccepted definition, taking a new unknowable description of meaning as if it were commonly shared” (Macagno and Walton 2014, 205).

As for Brown’s argument for the persuasive definition of Weak Scientism, according to which it “is a view that has its advocates putting too high a value on scientific knowledge” (Brown 2017b, 32), a key premise in this argument is the claim that there is a piece of philosophical knowledge that is better than scientific knowledge. This is premise 36 in Brown’s argument:

Some philosophers qua philosophers know that (a) true friendship is a necessary condition for human flourishing and (b) the possession of the moral virtues or a life project aimed at developing the moral virtues is a necessary condition for true friendship and (c) (therefore) the possession of the moral virtues or a life project aimed at developing the moral virtues is a necessary condition for human flourishing (see, e.g., the arguments in Plato’s Gorgias) and knowledge concerning the necessary conditions of human flourishing is better than any sort of scientific knowledge (see, e.g., St. Augustine’s Confessions, book five, chapters iii and iv) [assumption]

There is a lot to unpack here, but I will focus on what I take to be the points most relevant to the scientism debate. First, Brown assumes 36 without argument, but why think it is true? In particular, why think that (a), (b), and (c) count as philosophical knowledge? Brown says that philosophers know (a), (b), and (c) in virtue of being philosophers, but he does not tell us why that is the case.

After all, accounts of friendship, with lessons about the significance of friendship, predate philosophy (see, e.g., the friendship of Gilgamesh and Enkidu in The Epic of Gilgamesh). Did it really take Plato and Augustine to tell us about the significance of friendship? In fact, on Brown’s characterization of philosophy, namely, (P), (a), (b), and (c) do not count as philosophical knowledge at all, since Plato and Augustine did not publish in philosophy journals, were not academics with a Ph.D. in philosophy, and did not teach at public universities courses “with titles such as Introduction to Philosophy, Metaphysics, Epistemology, Normative Ethics, and Philosophy of Science” (Brown 2017b, 11).

Second, some philosophers, like Epicurus, need (and think that others need) friends to flourish, whereas others, like Diogenes of Sinope, need no one. For Diogenes, friends will only interrupt his sunbathing (Arrian VII.2). My point is not simply that philosophers disagree about the value of friendship and human flourishing. Of course they disagree.[5]

Rather, my point is that, in order to establish general truths about human beings, such as “Human beings need friends to flourish,” one must employ the methods of science, such as randomization and sampling procedures, blinding protocols, methods of statistical analysis, and the like; otherwise, one would simply commit the fallacies of cherry-picking anecdotal evidence and hasty generalization (Salmon 2013, 149-151). After all, the claim “Some need friends to flourish” does not necessitate, or even make more probable, the truth of “Human beings need friends to flourish.”[6]

Third, why think that “knowledge concerning the necessary conditions of human flourishing is better than any sort of scientific knowledge” (Brown 2017b, 32)? Better in what sense? Quantitatively? Qualitatively? Brown does not tell us. He simply declares it “self-evident” (Brown 2017b, 32). I take it that Brown would not want to argue that “knowledge concerning the necessary conditions of human flourishing” is better than scientific knowledge in the quantitative (i.e., in terms of research output and research impact) and qualitative (i.e., in terms of explanatory, instrumental, and predictive success) respects in which scientific knowledge is better than non-scientific knowledge, according to Weak Scientism.

If so, then in what sense exactly “knowledge concerning the necessary conditions of human flourishing” (Brown 2017b, 32) is supposed to be better than scientific knowledge? Brown (2017b, 32) simply assumes that without argument and without telling us in what sense exactly “knowledge concerning the necessary conditions of human flourishing is better than any sort of scientific knowledge” (Brown 2017b, 32).

Of course, philosophy does not have a monopoly on friendship and human flourishing as research topics. Psychologists and sociologists, among other scientists, work on friendship as well (see, e.g., Hojjat and Moyer 2017). To get an idea of how much research on friendship is done in scientific fields, such as psychology and sociology, and how much is done in philosophy, we can use a database like Web of Science.

Currently (03/29/2018), there are 12,334 records in Web of Science on the topic “friendship.” Only 76 of these records (0.61%) are from the Philosophy research area. Most of the records are from the Psychology (5,331 records) and Sociology (1,111) research areas (43.22% and 9%, respectively). As we can see from Figure 2, most of the research on friendship is done in scientific fields of study, such as psychology, sociology, and other social sciences.

Figure 2. Number of records on the topic “friendship” in Web of Science by research area (Source: Web of Science)

 

In terms of research impact, too, scientific knowledge about friendship is superior to philosophical knowledge about friendship. According to Web of Science, the average citations per year for Psychology research articles on the topic of friendship is 2826.11 (h-index is 148 and the average citations per item is 28.1), and the average citations per year for Sociology research articles on the topic of friendship is 644.10 (h-index is 86 and the average citations per item is 30.15), whereas the average citations per year for Philosophy research articles on friendship is 15.02 (h-index is 13 and the average citations per item is 8.11).

Quantitatively, then, psychological and sociological knowledge on friendship is better than philosophical knowledge in terms of research output and research impact. Both Psychology and Sociology produce significantly more research on friendship than Philosophy does, and the research they produce has significantly more impact (as measured by citation counts) than philosophical research on the same topic.

Qualitatively, too, psychological and sociological knowledge about friendship is better than philosophical knowledge about friendship. For, instead of rather vague statements about how “true friendship is a necessary condition for human flourishing” (Brown 2017b, 32) that are based on mostly armchair speculation, psychological and sociological research on friendship provides detailed explanations and accurate predictions about the effects of friendship (or lack thereof) on human well-being.

For instance, numerous studies provide evidence for the effects of friendships or lack of friendships on physical well-being (see, e.g., Yang et al. 2016) as well as mental well-being (see, e.g., Cacioppo and Patrick 2008). Further studies provide explanations for the biological and genetic bases of these effects (Cole et al. 2011). This knowledge, in turn, informs interventions designed to help people deal with loneliness and social isolation (see, e.g., Masi et al. 2010).[7]

To sum up, Brown (2017b, 32) has given no reasons to think that “knowledge concerning the necessary conditions of human flourishing is better than any sort of scientific knowledge.” He does not even tell us what “better” is supposed to mean here. He also ignores the fact that scientific fields of study, such as psychology and sociology, produce plenty of knowledge about human flourishing, both physical and mental well-being. In fact, as we have seen, science produces a lot more knowledge about topics related to human well-being, such as friendship, than philosophy does. For this reason, Brown (2017b, 32) has failed to show that “there is non-scientific form of knowledge better than scientific knowledge.”

Conclusion

At this point, I think it is quite clear that Brown and I are talking past each other on a couple of levels. First, I follow scientists (e.g., Weinberg 1994, 166-190) and philosophers (e.g., Haack 2007, 17-18 and Peels 2016, 2462) on both sides of the scientism debate in treating philosophy as an academic discipline or field of study, whereas Brown (2017b, 18) insists on thinking about philosophy as a personal activity of “individual intellectual progress.” Second, I follow scientists (e.g., Hawking and Mlodinow 2010, 5) and philosophers (e.g., Kidd 2016, 12-13 and Rosenberg 2011, 307) on both sides of the scientism debate in thinking about knowledge as the scholarly work or research produced in scientific fields of study, such as the natural sciences, as opposed to non-scientific fields of study, such as the humanities, whereas Brown insists on thinking about philosophical knowledge as personal knowledge.

To anyone who wishes to defend philosophy’s place in research universities alongside academic disciplines, such as history, linguistics, and physics, armed with this conception of philosophy as a “self-improvement” activity, I would use Brown’s (2017b, 30) words to say, “good luck with that project!” A much more promising strategy, I propose, is for philosophy to embrace scientific ways of knowing and for philosophers to incorporate scientific methods into their research.[8]

Contact details: mmizrahi@fit.edu

References

Arrian. “The Final Phase.” In Alexander the Great: Selections from Arrian, Diodorus, Plutarch, and Quintus Curtius, edited by J. Romm, translated by P. Mensch and J. Romm, 149-172. Indianapolis, IN: Hackett Publishing Company, Inc., 2005.

Ashton, Z., and M. Mizrahi. “Intuition Talk is Not Methodologically Cheap: Empirically Testing the “Received Wisdom” about Armchair Philosophy.” Erkenntnis (2017): DOI 10.1007/s10670-017-9904-4.

Ashton, Z., and M. Mizrahi. “Show Me the Argument: Empirically Testing the Armchair Philosophy Picture.” Metaphilosophy 49, no. 1-2 (2018): 58-70.

Cacioppo, J. T., and W. Patrick. Loneliness: Human Nature and the Need for Social Connection. New York: W. W. Norton & Co., 2008.

Cole, S. W., L. C. Hawkley, J. M. G. Arevaldo, and J. T. Cacioppo. “Transcript Origin Analysis Identifies Antigen-Presenting Cells as Primary Targets of Socially Regulated Gene Expression in Leukocytes.” Proceedings of the National Academy of Sciences 108, no. 7 (2011): 3080-3085.

Copi, I. M., C. Cohen, and K. McMahon. Introduction to Logic. Fourteenth Edition. New York: Prentice Hall, 2011.

Brogaard, B., and C. A. Pynes (eds.). “Overall Rankings.” The Philosophical Gourmet Report. Wiley Blackwell, 2018. Available at http://34.239.13.205/index.php/overall-rankings/.

Brown, C. M. “Some Objections to Moti Mizrahi’s ‘What’s So Bad about Scientism?’.” Social Epistemology Review and Reply Collective 6, no. 8 (2017a): 42-54.

Brown, C. M. “Defending Some Objections to Moti Mizrahi’s Arguments Scientism.” Social Epistemology Review and Reply Collective 7, no. 2 (2017b): 1-35.

Haack, S. Defending Science–within Reason: Between Scientism and Cynicism. New York: Prometheus Books, 2007.

Hawking, S., and L. Mlodinow. The Grand Design. New York: Bantam Books, 2010.

Hojjat, M., and A. Moyer (eds.). The Psychology of Friendship. New York: Oxford University Press, 2017.

Hurley, P. J. A Concise Introduction to Logic. Twelfth Edition. Stamford, CT: Cengage Learning, 2015.

Kelly, T. “Evidence.” In E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2016 Edition). https://plato.stanford.edu/archives/win2016/entries/evidence/.

Kidd, I. J. “How Should Feyerabend Have Defended Astrology? A Reply to Pigliucci.” Social Epistemology Review and Reply Collective 5 (2016): 11–17.

Kitcher, P. “A Plea for Science Studies.” In A House Built on Sand: Exposing Postmodernist Myths about Science, edited by N. Koertge, 32–55. New York: Oxford University Press, 1998.

Lewis, C. S. The Four Loves. New York: Harcourt Brace & Co., 1960.

Macagno, F., and D. Walton. Emotive Language in Argumentation. New York: Cambridge University Press, 2014.

Masi, C. M., H. Chen, and L. C. Hawkley. “A Meta-Analysis of Interventions to Reduce Loneliness.” Personality and Social Psychology Review 15, no. 3 (2011): 219-266.

Mizrahi, M. “Intuition Mongering.” The Reasoner 6, no. 11 (2012): 169-170.

Mizrahi, M. “More Intuition Mongering.” The Reasoner 7, no. 1 (2013a): 5-6.

Mizrahi, M. “What is Scientific Progress? Lessons from Scientific Practice.” Journal for General Philosophy of Science 44, no. 2 (2013b): 375-390.

Mizrahi, M. “New Puzzles about Divine Attributes.” European Journal for Philosophy of Religion 5, no. 2 (2013c): 147-157.

Mizrahi, M. “The Pessimistic Induction: A Bad Argument Gone Too Far.” Synthese 190, no. 15 (2013d): 3209-3226.

Mizrahi, M. “Does the Method of Cases Rest on a Mistake?” Review of Philosophy and Psychology 5, no. 2 (2014): 183-197.

Mizrahi, M. “On Appeals to Intuition: A Reply to Muñoz-Suárez.” The Reasoner 9, no. 2 (2015a): 12-13.

Mizrahi, M. “Don’t Believe the Hype: Why Should Philosophical Theories Yield to Intuitions?” Teorema: International Journal of Philosophy 34, no. 3 (2015b): 141-158.

Mizrahi, M. “Historical Inductions: New Cherries, Same Old Cherry-Picking.” International Studies in the Philosophy of Science 29, no. 2 (2015c): 129-148.

Mizrahi, M. “Three Arguments against the Expertise Defense.” Metaphilosophy 46, no. 1 (2015d): 52-64.

Mizrahi, M. “The History of Science as a Graveyard of Theories: A Philosophers’ Myth?” International Studies in the Philosophy of Science 30, no. 3 (2016): 263-278.

Mizrahi, M. “What’s So Bad about Scientism?” Social Epistemology 31, no. 4 (2017a): 351-367.

Mizrahi, M. “In Defense of Weak Scientism: A Reply to Brown.” Social Epistemology Review and Reply Collective 6, no. 11 (2017b): 9-22.

Mizrahi, M. “Introduction.” In The Kuhnian Image of Science: Time for a Decisive Transformation? Edited by M. Mizrahi, 1-22. London: Rowman & Littlefield, 2017c.

National Center for Education Statistics. “Bachelor’s degrees conferred by postsecondary institutions, by field of study: Selected years, 1970-71 through 2015-16.” Digest of Education Statistics (2017). https://nces.ed.gov/programs/digest/d17/tables/dt17_322.10.asp?current=yes.

Peels, R. “The Empirical Case Against Introspection.” Philosophical Studies 17, no. 9 (2016): 2461-2485.

Peels, R. “Ten Reasons to Embrace Scientism.” Studies in History and Philosophy of Science Part A 63 (2017): 11-21.

Rosenberg, A. The Atheist’s Guide to Reality: Enjoying Life Without Illusions. New York: W. W. Norton, 2011.

Rousseau, R., L. Egghe, and R. Guns. Becoming Metric-Wise: A Bibliometric Guide for Researchers. Cambridge, MA: Elsevier, 2018.

Salmon, M. H. Introduction to Logic and Critical Thinking. Sixth Edition. Boston, MA: Wadsworth, 2013.

Scimago Journal & Country Rank. “Subject Bubble Chart.” SJR: Scimago Journal & Country Rank. Accessed on April 3, 2018. http://www.scimagojr.com/mapgen.php?maptype=bc&country=US&y=citd.

Sinnott-Armstrong, W., and R. J. Fogelin. Understanding Arguments: An Introduction to Informal Logic. Eighth Edition. Belmont, CA: Wadsworth Cengage Learning, 2010.

Social Epistemology. “Aims and Scope.” Social Epistemology: A Journal of Knowledge, Culture and Policy (2018). https://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=tsep20.

Weinberg, S. Dreams of a Final Theory: The Scientist’s Search for the Ultimate Laws of Nature. New York: Random House, 1994.

Williams, R. N. “Introduction.” In Scientism: The New Orthodoxy, edited by R. N. Williams and D. N. Robinson, 1-22. New York: Bloomsbury Academic, 2015.

Yang, C. Y., C. Boen, K. Gerken, T. Li, K. Schorpp, and K. M. Harris. “Social Relationships and Physiological Determinants of Longevity Across the Human Life Span.” Proceedings of the National Academy of Sciences 113, no. 3 (2016): 578-583.

[1] I thank Adam Riggio for inviting me to respond to Brown’s second attack on Weak Scientism.

[2] On why appeals to intuition are bad arguments, see Mizrahi (2012), (2013a), (2014), (2015a), (2015b), and (2015d).

[3] I use friendship as an example here because Brown (2017b, 31) uses it as an example of philosophical knowledge. I will say more about that in Section 6.

[4] For more on paradoxes involving the divine attributes, see Mizrahi (2013c).

[5] “Friendship is unnecessary, like philosophy, like art, like the universe itself (for God did not need to create)” (Lewis 1960, 71).

[6] On fallacious inductive reasoning in philosophy, see Mizrahi (2013d), (2015c), (2016), and (2017c).

[7] See also “The Friendship Bench” project: https://www.friendshipbenchzimbabwe.org/.

[8] For recent examples, see Ashton and Mizrahi (2017) and (2018).

Author Information: Christopher M. Brown, University of Tennessee, Martin, chrisb@utm.edu

Brown, Christopher M. “Defending Some Objections to Moti Mizrahi’s Arguments for Weak Scientism.” Social Epistemology Review and Reply Collective 7, no. 2 (2018): 1-35.

The pdf of the article gives specific page references, and contains the article’s complete text. Due to its length, we have split the online publication of Brown’s reply into three segments. The first was published 30 January, and the second 1 February. Shortlink for part three: https://wp.me/p1Bfg0-3TQ

Please refer to:

Image by Chase Elliott Clark via Flickr / Creative Commons

 

Revisiting an Objection to Mizrahi’s Attempt to Defeat Objection O2

Recall that Mizrahi thinks Mizrahi’s Argument is a scientific argument. Furthermore, in 2017a he thinks he needs to defend Weak Scientism against objection O2. He does so by arguing that: (a) if O2 is true, then all knowledge by inference would be viciously circular; but the consequent of (a) is false, and, therefore, the antecedent of (a) is false.

In my 2017 response to Mizrahi 2017a, I argued that Mizrahi’s attempt to defeat objection O2 fails since he assumes, citing Ladyman, that “‘deductive inference is only defensible by appeal to deductive inference’ (Ladyman 2002, 49)” (Mizrahi 2017a, 362) whereas it is reasonable to think that the rules of deductive inference are defensible by noting we believe them by the same sort of power we believe propositions such as ‘1+1=2’ and ‘a whole is greater than one its parts’, namely, some non-inferential mode of knowing (see, e.g., Feldman 2003, 3-4). So there is no inconsistency in affirming both a scientific argument for Weak Scientism is a circular argument and knowledge of the rules of deductive inference is defensible.

Now, in responding to my comment in 2017, Mizrahi misconstrues my comment by rendering it as the following question: “why think that deductive rules of inference cannot be proved valid in a non-circular way?” (2017b, 9; emphasis mine). But as should be clear from the above, this is not my objection, since I never talk about “proving in a valid way” deductive rules of inference. Mizrahi seems to think that the only way to show deductive inference is defensible is by way of a circular proof of them. But why think a thing like that? Rather, as Aristotle famously points out, good deductive arguments have to start from premises that we know with certainty by way of some non-deductive means (Posterior Analytics, Book II, ch. 19, see esp. 100a14-100b18). Again, Mizrahi has not shown there is an inconsistency in affirming both a scientific argument for Weak Scientism is a circular argument and knowledge of the rules of deductive inference is defensible.

Against Mizrahi’s Claim that Philosophers Should Not Use Persuasive Definitions of Scientism.

In 2017a, Mizrahi claims that persuasive definitions of scientism, e.g., “scientism is a matter of putting too high a value on science in comparison with other branches of learning or culture” (Sorrell 1994, x) or “scientism is an exaggerated deference towards science, an excessive readiness to accept as authoritative any claim made by the sciences, and to dismiss every kind of criticism of science or its practitioners as anti-scientific prejudice” (Haack 2007, 17-18), are problematic because they beg the question against the scientistic stance (Mizrahi 2017a, 351; 352), or otherwise err by not “show[ing] precisely what is wrong with scientism” (2017a, 352).

In my 2017 response to Mizrahi’s claim that philosophers should not use persuasive definitions of scientism, I do two things. First, I offer a counter-example to Mizrahi’s view by showing that one can give a logically valid argument for the “persuasive” description, ‘abortion is murder’, an argument that does not beg questions against those who deny the conclusion and also explains why some folks accept the conclusion. Second, I attempted to offer a non-question begging argument for a persuasive description of scientism, one which offers an explanation—by way of its premises—why someone may accept that definition as true.

Mizrahi offers some objections to my 2017 response on this score. First, Mizrahi objects that my sample argument for the conclusion, abortion is murder, is invalid. He next posits that one of the premises of my sample argument for the conclusion, abortion is murder, is such that “the emotionally charged term ‘innocent’ is smuggled into [it]” (2017b, 18). Finally, he gives a reason why one may think the premise, the human fetus is an innocent person, is false.

Mizrahi thinks my argument for a persuasive definition of scientism “suffers from the same problems as [my] abortion argument” (2017b, 18). More specifically, he thinks the argument is “misleading” since it treats Strong Scientism and Weak Scientism in one argument and Mizrahi does not advocate for Strong Scientism, but for Weak Scientism. In addition, he notes I assume “without argument that there is some item of knowledge . . . that is both non-scientific and better than scientific knowledge. Given that the scientism debate is precisely about whether scientific knowledge is superior to non-scientific knowledge, one cannot simply assume that non-scientific knowledge is better than scientific knowledge without begging the question” (2017b, 19).

In responding to these objections, I begin with Mizrahi’s analysis of my sample argument for the conclusion, abortion is murder. The first thing to say is that Mizrahi criticizes an argument different from the one I give in my 2017 response. The sample argument I offer in 2017 is as follows:

14. Abortion is the direct killing of a human fetus.
15. The human fetus is an innocent person.
16. Therefore, abortion is the direct killing of an innocent person [from 14 and 15].
17. The direct killing of an innocent person is murder.
18. Therefore, abortion is murder [from 16 and 17].

For some reason, Mizrahi renders premise 14 as

14a. Abortion is the direct killing of a human being (2017b, 17).

Mizrahi then accuses me of offering an invalid argument. Now, I agree that an argument the conclusion of which is proposition 16 and the premises of which are 14a and 15 is a logically invalid argument. But my argument has 16 as its conclusion and 14 and 15 as its premises, and that argument is logically valid.

As for Mizrahi’s next objection to my sample argument for the conclusion, abortion is murder, just because a person S finds a premise “emotionally charged” does not mean a person S1 can’t properly use that premise in an argument; that is to say, just because some person S doesn’t like to consider whether a premise is true, or doesn’t like to think about the implications of a premise’s being true, it does not follow that the use of such a premise is somehow dialectically improper.

If it were the case that emotionally laden or emotionally charged premises are off-limits, then just about all arguments in applied ethics (about topics such as the morality of the death penalty, eating meat, factory farming, gun-control, etc.) would be problematic since such arguments regularly employ premises that advocates and opponents alike will find emotionally laden or emotionally charged. The claim that a premise is dialectically improper because it is emotionally laden or emotionally charged is a non-starter.

Perhaps Mizrahi would counter by saying premise 15 is itself a persuasive definition or description, and so to use it as a premise in an argument that is supposed to be a counter-example to the view that the use of persuasive definitions is question-begging is itself question-begging. In that case, one may add the following premises to my sample argument for a non-question-begging argument that explains why someone may think abortion is murder:

15a. If a human person has not committed any crimes and is not intentionally attacking a human person, then that human person is an innocent person [assumption].

15b. A human being is a human person [assumption].

15c. A human fetus is a human being [assumption].

15d. Therefore, a human fetus is a human person [from 15b and 15c]

15e. Therefore, if a human fetus has not committed any crimes and is not intentionally attacking a human person, then a human fetus is an innocent person [from 15a and 15d].

15f. A human fetus has not committed any crimes and is not intentionally attacking a human person [assumption].

15g. Therefore, a human fetus is an innocent person [from 15e and 15f, MP].

Now, it may be that Mizrahi will offer reasons for rejecting some of the premises in the argument above, just as he offers a reason in 2017a for thinking 15 is false in the argument consisting of propositions 14-18. But all that would be beside the point. For the goal was not to produce a sample argument whose conclusion was a persuasive definition or description that any philosopher would think is sound—good luck with that project!—but rather to produce a logically valid argument for a persuasive definition of a term that both (a) does not beg any questions against those who reject the conclusion and (b) provides reasons for thinking the conclusion is true. But both the argument consisting of propositions 14-18 and the argument consisting of propositions 15a-15g do just that. Therefore, these arguments constitute good counter-examples to Mizrahi’s claim that persuasive definitions are always dialectally pernicious.

Turning to my argument in defense of a persuasive definition of scientism, I grant that my attempt in 2017 to offer one argument in defense of a persuasive definition of scientism that makes reference both to Strong Scientism and Weak Scientism is misleading. I therefore offer here an argument for a persuasive definition of Weak Scientism.
Also, rather than using variables in my sample argument, which I thought sufficient in my 2017 response (for the simple reason I thought a sample schema for a non-question begging argument in defense of a persuasive definition of scientism is what was called for), I also offer a possible example of a piece of philosophical knowledge that is better than scientific knowledge in my argument here. In my view, the following logically valid argument both offers an explanation for accepting its conclusion and does not beg any questions against those who reject its conclusion:

  1. Weak Scientism is the view that, of the various kinds of knowledge, scientific knowledge is the best [assumption].
  2. If scientific knowledge is the best kind of knowledge, then scientific knowledge is better than all forms of non-scientific knowledge [self-evident].
  3. Weak Scientism implies scientific knowledge is better than all forms of non-scientific knowledge [from 28 and 29].
  4. If position P1 implies that x is better than all forms of non-x, then P1 implies x is more valuable than all forms of non-x [assumption].[1]
  5. Therefore, Weak Scientism implies scientific knowledge is more valuable than all forms of non-scientific knowledge [from 30 and 31].
  6. If position P1 implies that x is more valuable than all forms of non-x, but x is not more valuable than all forms of non-x, then P1 is a view that has its advocates putting too high a value on x [assumption].
  7. Therefore, if Weak Scientism implies that scientific knowledge is more valuable than all forms of non-scientific knowledge and scientific knowledge is not more valuable than all forms of non-scientific knowledge, then Weak Scientism is a view that has its advocates putting too high a value on scientific knowledge [from 33].
  8. Some philosophers qua philosophers know that (a) true friendship is a necessary condition for human flourishing and (b) the possession of the moral virtues or a life project aimed at developing the moral virtues is a necessary condition for true friendship and (c) (therefore) the possession of the moral virtues or a life project aimed at developing the moral virtues is a necessary condition for human flourishing (see, e.g., the argument in Plato’s Gorgias[2]) and knowledge concerning the necessary conditions of human flourishing is better than any sort of scientific knowledge (see, e.g., St. Augustine’s Confessions, book five, chapters iii and iv), then there is a non-scientific form of knowledge better than scientific knowledge [self-evident].
  9. Some philosophers qua philosophers know that (a) true friendship is a necessary condition for human flourishing and (b) the possession of the moral virtues or a life project aimed at developing the moral virtues is a necessary condition for true friendship and (c) (therefore) the possession of the moral virtues or a life project aimed at developing the moral virtues is a necessary condition for human flourishing (see, e.g., the argument in Plato’s Gorgias) and knowledge concerning the necessary conditions of human flourishing is better than any sort of scientific knowledge (see, e.g., St. Augustine’s Confessions, book five, chapters iii and iv) [assumption].
  10. Therefore, there is a form of non-scientific knowledge better than scientific knowledge [from 35 and 36, MP].
  11. If knowing some form of non-x is better than knowing x, then knowing some form of non-x is more valuable than knowing x [assumption].
  12. Therefore, there is a form of non-scientific knowledge that is more valuable than scientific knowledge [from 37 and 38].
  13. Therefore, scientific knowledge is not more valuable than all forms of non-scientific knowledge [from 39].
  14. Therefore, Weak Scientism is a view that has its advocates putting too high a value on scientific knowledge [from 34, 32, and 40, MP].

In my view, the argument above both offers an explanation for accepting its conclusion and does not beg any questions against those who reject the conclusion. Someone may think one of the premises is false, e.g., 36. But that is beside the point at issue here. For Mizrahi claims the use of persuasive definitions always involves begging the question or a failure to support the persuasive definition with reasons.

But the argument above does not beg the question; someone may think Weak Scientism is true, become acquainted with the claim in premise 36, and then, realizing the error of his ways by way of the argument above, reject Weak Scientism. The argument above also provides a set of reasons for the conclusion, which is a persuasive description of Weak Scientism. It therefore constitutes a good counter-example to Mizrahi’s claim that the use of a persuasive definition of scientism is always problematic.

Contact details: chrisb@utm.edu

References

Aquinas, Saint Thomas. Summa Theologiae. Translated by the Fathers of the English Dominican Province. Allen, TX: Christian Classics, 1981.

Aquinas, Saint Thomas. Summa Contra Gentiles. Book One. Trans. Anton C. Pegis. South Bend, IN: University of Notre Dame Press, 1991.

Aristotle. Posterior Analytics. Trans. G.R.G. Mure. In The Basic Works of Aristotle. Ed. Richard McKeon. New York: Random House, 1941.

Aristotle. On the Parts of Animals. Trans. William Ogle. In The Basic Works of Aristotle. Ed. Richard McKeon. New York: Random House, 1941.

Aristotle. Nicomachean Ethics. Trans. W.D. Ross. In The Basic Works of Aristotle. Ed. Richard McKeon. New York: Random House, 1941.

Augustine, Saint. Confessions. Trans. Frank Sheed. 1942; reprint, Indianapolis: Hackett Publishing, 2006.

Brown, Christopher. “Some Logical Problems for Scientism.” Proceedings of the American Catholic Philosophical Association 85 (2011): 189-200.

Brown, Christopher. “Some Objections to Moti Mizrahi’s ‘What’s So Bad about Scientism?’.” Social Epistemology Review and Reply Collective 6, no. 8 (2017): 42-54.

Bourget, David and David J. Chalmers. “What do philosophers believe?” Philosophical Studies 170, 3 (2014): 465-500.

Chesterton, G.K. Orthodoxy. 1908; reprint, San Francisco: Ignatius Press, 1995.

Feldman, Richard. Epistemology. Upper Saddle River, NJ: Prentice-Hall, 2003.

Feser, Edward. The Last Superstition: A Refutation of the New Atheism. South Bend: St. Augustine’s Press, 2008.

Feser, Edward. “Blinded by Scientism.” Public Discourse. March 9, 2010a. Accessed January 15, 2018. http://www.thepublicdiscourse.com/2010/03/1174/.

Feser, Edward. “Recovering Sight after Scientism.” Public Discourse. March 12, 2010b. Accessed January 15, 2018. http://www.thepublicdiscourse.com/2010/03/1184/.

Feser, Edward. Scholastic Metaphysics: A Contemporary Introduction. editiones scholasticae, 2014.

Haack, Susan. Defending Science—Within Reason: Between Scientism and Cynicism. Amherst, NY: Prometheus Books, 2007.

Haack, Susan. “The Real Question: Can Philosophy Be Saved? Free Inquiry (October/November 2017): 40-43.

MacIntyre, Alasdair. God, Philosophy, and Universities. Lanham: Rowman & Littlefield, 2009.

Mizrahi, Moti. “What’s So Bad About Scientism?” Social Epistemology 31, no. 4 (2017a): 351-367.

Mizrahi, Moti. “In Defense of Weak Scientism: A Reply to Brown.” Social Epistemology Review and Reply Collective 6, no. 11 (2017b): 9-22.

Oxford English Dictionary Online, s.v. “scientism,” accessed January 10, 2018, http://www.oed.com/view/Entry/172696?redirectedFrom=scientism.

Papineau, David. “Is Philosophy Simply Harder than Science?” The Times Literary Supplement On-line. June 1, 2017. Accessed July 11, 2017. https://goo.gl/JiSci7.

Pieper, Josef. In Defense of Philosophy. Trans. Lothar Krauth. 1966; reprint, San Francisco: Ignatius Press, 1992.

Plato. Phaedo. In Five Dialogues. Trans. Grube and Cooper. Indianapolis: Hackett Publishing, 2002.

Plato. Gorgias. Trans. Donald J. Zeyl. Indianapolis: Hackett Publishing, 1987.

Plato. Republic. Trans. C.D.C. Reeve. Indianapolis: Hackett Publishing, 2004.

Postman, Neil. Technopoly: the Surrender of Culture to Technology. New York: Vintage Books, 1993.

Robinson, Daniel N. “Science, Scientism, and Explanation.” In Scientism: the New Orthodoxy. Williams and Robinson, eds. London: Bloomsbury Academic, 2015, 23-40.

Rosenberg, Alex. The Atheist’s Guide to Reality. New York: W. W. Norton and Co., 2011.

Sorrell, Tom. Scientism: Philosophy and the Infatuation with Science. First edition. London: Routledge, 1994.

Sorell, Tom. Scientism: Philosophy and the Infatuation with Science. Kindle edition. London: Routledge, 2013.

Van Inwagen, Peter. Metaphysics. 4th edition. Boulder, CO: Westview Press, 2015.

Williams, Richard. N. and Daniel N. Robinson, eds. Scientism: the New Orthodoxy. London: Bloomsbury Academic, 2015.

[1] The proposition S’s preferring x to y is logically distinct from the proposition, x’s being more valuable than y. For S may prefer x to y even though y is, in fact, more valuable than x.

[2] See Gorgias 507a-508a.

Author Information: Mark Shiffman, Villanova University, mark.shiffman@villanova.edu

Shiffman, Mark. “Real Alternatives on Decisive Issues: A Response to Alcibiades Malapi-Nelson.” Social Epistemology Review and Reply Collective 5, no. 4 (2016): 52-55.

The PDF of the article gives specific page numbers. Shortlink: http://wp.me/p1Bfg0-2U9

Please refer to:

blue_moon

Image credit: NASA Goddard Space Flight Center, via flickr

My thanks to Dr. Malapi-Nelson for his attention (2016) to my article (2015) and some very kind words he had for it. As a part-time classicist and Socratic philosopher, it is of course an unusual delight to be criticized by an Alcibiades. I am put in mind of Plutarch’s life of that flamboyant character, which seems to suggest that Socrates made Alcibiades less destructive by making him realize that his hyperbolic desires were inherently insatiable, thus reigning in his tyrannical impulses by rendering him incapable of taking his political aims too seriously. There may be some analogy to the effect I would like to have on the extravagant fantasies of transhumanism, with their potential for destroying humane limits in the name of an infinite dissatisfaction with given reality. (I think Bob Frodeman and I are pulling together on this, however mismatched a pair of draft animals we may otherwise be.)  Continue Reading…