Archives For philosophy of science

Author Information: Jeff Kochan, University of Konstanz, jwkochan@gmail.com.

Kochan, Jeff. “Decolonising Science in Canada: A Work in Progress.” Social Epistemology Review and Reply Collective 7, no. 11 (2018): 42-47.

The pdf of the article gives specific page numbers. Shortlink: https://wp.me/p1Bfg0-43i

A Mi’kmaw man and woman in ceremonial clothing.
Image by Shawn Harquail via Flickr / Creative Commons

 

This essay is in reply to:

Wills, Bernard (2018). ‘Weak Scientism: The Prosecution Rests.’ Social Epistemology Review & Reply Collective 7(10): 31-36.

In a recent debate about scientism in the SERRC pages, Bernard Wills challenges the alleged ‘ideological innocence’ of scientism by introducing a poignant example from his own teaching experience on the Grenfell Campus of Memorial University, in Corner Brook, Newfoundland (Wills 2018: 33).

Note that Newfoundland, among its many attractions, claims a UNESCO World Heritage site called L’Anse aux Meadows. Dating back about 1000 years, L’Anse aux Meadows is widely agreed to hold archaeological evidence for the earliest encounters between Europeans and North American Indigenous peoples.

Southwest Newfoundland is a part of Mi’kma’ki, the traditional territory of the Mi’kmaq. This territory also includes Nova Scotia, Prince Edward Island, and parts of New Brunswick, Québec, and Maine. Among North America’s Indigenous peoples, the Mi’kmaq can readily claim to have experienced some of the earliest contact with European culture.

Creeping Colonialism in Science

Let us now turn to Wills’s example. A significant number of students on the Grenfell Campus are Mi’kmaq. These students have sensitised Wills to the fact that science has been used by the Canadian state as an instrument for colonial oppression. By cloaking colonialism in the claim that science is a neutral, universal standard by which to judge the validity of all knowledge claims, state scientism systematically undermines the epistemic authority of ancient Mi’kmaq rights and practices.

Wills argues, ‘[t]he fact that Indigenous knowledge traditions are grounded in local knowledge, in traditional lore and in story means that on questions of importance to them Indigenous peoples cannot speak. It means they have to listen to others who “know better” because the propositions they utter have the form of science.’ Hence, Wills concludes that, in the Canadian context, the privileging of science over Indigenous knowledge ‘is viciously exploitative and intended to keep indigenous peoples in a place of dependency and inferiority’ (Wills 2018: 33-4).

There is ample historical and ethnographic evidence available to support Wills’s claims. John Sandlos, for example, has shown how the Canadian state, from the late 19th century to around 1970, used wildlife science as a ‘coercive’ and ‘totalizing influence’ in order to assert administrative control over Indigenous lives and lands in Northern Canada (Sandlos 2007: 241, 242).

Paul Nadasdy, in turn, has argued that more recent attempts by the Canadian state to establish wildlife co-management relationships with Indigenous groups are but ‘subtle extensions of empire, replacing local Aboriginal ways of talking, thinking and acting with those specifically sanctioned by the state’ (Nadasdy 2005: 228). The suspicions of Wills’s Mi’kmaw students are thus well justified by decades of Canadian state colonial practice.

Yet Indigenous peoples in Canada have also pointed out that, while this may be most of the story, it is not the whole story. For example, Wills cites Deborah Simmons in support of his argument that the Canadian state uses science to silence Indigenous voices (Wills 2018: 33n4). Simmons certainly does condemn the colonial use of science in the article Wills cites, but she also writes: ‘I’ve seen moments when there is truly a hunger for new knowledge shared by indigenous people and scientists, and cross-cultural barriers are overcome to discuss research questions and interpret results from the two distinct processes of knowledge production’ (Simmons 2010).

Precious Signs of Hope Amid Conflict

In the haystack of Canada’s ongoing colonial legacy, it can often be very difficult to detect such slivers of co-operation between scientists and Indigenous peoples. For example, after three decades of periodic field work among the James Bay Cree, Harvey Feit still found it difficult to accept Cree claims that they had once enjoyed a long-term, mutually beneficial relationship with the Canadian state in respect of wildlife management in their traditional hunting territories. But when Feit finally went into the archives, he discovered that it was true (Feit 2005: 269; see also the discussion in Kochan 2015: 9-10).

In a workshop titled Research the Indigenous Way, part of the 2009 Northern Governance and Policy Research Conference, held in Yellowknife, Northwest Territories, participants affirmed that ‘Indigenous people have always been engaged in research processes as part of their ethical “responsibility to keep the land alive”’ (McGregor et al. 2010: 102). At the same time, participants also recognised Indigenous peoples’ ‘deep suspicion’ of research as a vehicle for colonial exploitation (McGregor et al. 2010: 118).

Yet, within this conflicted existential space, workshop participants still insisted that there had been, in the last 40 years, many instances of successful collaborative research between Indigenous and non-Indigenous practitioners in the Canadian North. According to one participant, Alestine Andre, these collaborations, although now often overlooked, ‘empowered and instilled a sense of well-being, mental, physical, emotional, spiritual good health in their Elders, youth and community people’ (McGregor et al. 2010: 108).

At the close of the workshop, participants recommended that research not be rejected, but instead indigenised, that is, put into the hands of Indigenous practitioners ‘who bear unique skills for working in the negotiated space that bridges into and from scientific and bureaucratic ways of knowing’ (McGregor et al. 2010: 119). Indigenised research should both assert and strengthen Indigenous rights and self-government.

Furthermore, within this indigenised research context, ‘there is a role for supportive and knowledgeable non-Indigenous researchers, but […] these would be considered “resource people” whose imported research interests and methods are supplementary to the core questions and approach’ (McGregor et al. 2010: 119).

Becoming a non-Indigenous ‘resource person’ in the context of decolonising science can be challenging work, and may offer little professional reward. As American archaeologist, George Nicholas, observes, it ‘requires more stamina and thicker skin than most of us, including myself, are generally comfortable with – and it can even be harmful, whether one is applying for permission to work on tribal lands or seeking academic tenure’ (Nicholas 2004: 32).

Indigenous scholar Michael Marker, at the University of British Columbia, has likewise suggested that such research collaborations require patience: in short, ‘don’t rush!’ (cited by Wylie 2018). Carly Dokis and Benjamin Kelly, both of whom study Indigenous water-management practices in Northern Ontario, also emphasise the importance of listening, of ‘letting go of your own timetable and relinquishing control of your project’ (Dokis & Kelly 2014: 2). Together with community-based researchers, Dokis and Kelly are exploring new research methodologies, above all the use of ‘storycircles’ (https://faculty.nipissingu.ca/carlyd/research/).

Such research methods are also being developed elsewhere in Canada. The 2009 Research the Indigenous Way workshop, mentioned above, was structured as a ‘sharing circle,’ a format that, according to the workshop facilitators, ‘reflect[ed] the research paradigm being talked about’ (McGregor et al. 2010: 101). Similarly, the 13th North American Caribou Workshop a year later, in Winnipeg, Manitoba, included an ‘Aboriginal talking circle,’ in which experiences and ideas about caribou research were shared over the course of one and a half days. The ‘relaxed pace’ of the talking circle ‘allowed for a gradual process of relationship-building among the broad spectrum of Aboriginal nations, while providing a scoping of key issues in caribou research and stewardship’ (Simmons et al. 2012: 18).

Overcoming a Rational Suspicion

One observation shared by many participants in the caribou talking circle was the absence of Indigenous youth in scientific discussions. According to the facilitators, an important lesson learned from the workshop was that youth need to be part of present and future caribou research in order for Indigenous knowledge to survive (Simmons et al. 2012: 19).

This problem spans the country and all scientific fields. As Indigenous science specialist Leroy Little Bear notes, the Canadian Royal Commission on Aboriginal Peoples (1991-1996) ‘found consistent criticism among Aboriginal people in the lack of curricula in schools that were complimentary to Aboriginal peoples’ (Little Bear 2009: 17).

This returns us to Wills’s Mi’kmaw students at the Grenfell Campus in Corner Brook. A crucial element in decolonising scientific research in Canada is the encouragement of Indigenous youth interest in scientific ways of knowing nature. Wills’s observation that Mi’kmaw students harbour a keen suspicion of science as an instrument of colonial oppression points up a major obstacle to this community process. Under present circumstances, Indigenous students are more likely to drop out of, rather than to tune into, the science curricula being taught at their schools and universities.

Mi’kmaw educators and scholars are acutely aware of this problem, and they have worked assiduously to overcome it. In the 1990s, a grass-roots initiative between members of the Mi’kmaw Eskasoni First Nation and a handful of scientists at nearby Cape Breton University (CBU), in Nova Scotia, began to develop and promote a new ‘Integrative Science’ programme for CBU’s syllabus. Their goal was to reverse the almost complete absence of Indigenous students in CBU’s science-based courses by including Mi’kmaw and other Indigenous knowledges alongside mainstream science within the CBU curriculum (Bartlett et al. 2012: 333; see also Hatcher et al. 2009).

In Fall Term 2001, Integrative Science (in Mi’kmaw, Toqwa’tu’kl Kjijitaqnn, or ‘bringing our knowledges together’) became an accredited university degree programme within CBU’s already established 4-year Bachelor of Science Community Studies (BScCS) degree (see: http://www.integrativescience.ca). In 2008, however, the suite of courses around which the programme had been built was disarticulated from both the BScSC and the Integrative Science concentration, and was instead offered within ‘access programming’ for Indigenous students expressing interest in a Bachelor of Arts degree. The content of the courses was also shifted to mainstream science (Bartlett et al. 2012: 333).

Throughout its 7-year existence, the Integrative Science academic programme faced controversy within CBU; it was never assigned a formal home department or budget (Bartlett et al. 2012: 333). Nevertheless, the programme succeeded in meeting its original goal. Over those 7 years, 27 Mi’kmaw students with some programme affiliation graduated with a science or science-related degree, 13 of them with a BScSC concentration in Integrative Science.

In 2012, most of these 13 graduates held key service positions within their home communities (e.g., school principal, research scientist or assistant, job coach, natural resource manager, nurse, teacher). These numbers compare favourably with the fewer than 5 Indigenous students who graduated with a science or science-related degree, unaffiliated with Integrative Science, both before and during the life of the programme (Bartlett et al. 2012: 334). All told, up to 2007, about 100 Mi’kmaw students had participated in first-year Integrative Science courses at CBU (Bartlett et al. 2012: 334).

From its inception, Integrative Science operated under an axe, facing, among other things, chronic ‘inconsistencies and insufficiencies at the administrative, faculty, budgetary and recruitment levels’ (Bartlett 2012: 38). One could lament its demise as yet one more example of the colonialism that Wills has brought to our attention in respect of the Grenfell Campus in Corner Brook. Yet it is important to note that the culprit here was not science, as such, but a technocratic – perhaps scientistic – university bureaucracy. In any case, it seems inadequate to chalk up the travails of Integrative Science to an indiscriminate search for administrative ‘efficiencies’ when the overall nation-state context was and is, in my opinion, a discriminatory one.

When Seeds Are Planted, Change Can Come

But this is not the note on which I would like to conclude. To repeat, up to 2007, about 100 Mi’kmaw students had participated in first-year Integrative Science courses. That is about 100 Mi’kmaw students who are, presumably, less likely to hold the firmly negative attitude towards science that Wills has witnessed among his own Mi’kmaw students in Newfoundland.

As I wrote above, in the haystack of Canada’s ongoing colonial legacy, it can be very difficult to detect those rare slivers of co-operation between scientists and Indigenous peoples on which I have here tried to shine a light. If this light were allowed to go out, a sense of hopelessness could follow, and then an allegedly hard border between scientific and Indigenous knowledges may suddenly spring up and appear inevitable, if also, for some, lamentable.

Let me end with the words of Albert Marshall, who, at least up to 2012, was the designated voice on environmental matters for Mi’kmaw Elders in Unama’ki (Cape Breton), as well as a member of the Moose Clan. Marshall was a key founder and constant shepherd of CBU’s Integrative Science degree programme. One last time: some 100 Mi’kmaw students participated in that programme during its brief life. Paraphrased by his CBU collaborator, Marilyn Iwama, Elder Marshall had this to say:

Every year, the ash tree drops its seeds on the ground. Sometimes those seeds do not germinate for two, three or even four cycles of seasons. If the conditions are not right, the seeds will not germinate. […] [Y]ou have to be content to plant seeds and wait for them to germinate. You have to wait out the period of dormancy. Which we shouldn’t confuse with death. We should trust this process. (Bartlett et al. 2015: 289)

Contact details: jwkochan@gmail.com

References

Bartlett, Cheryl (2012). ‘The Gift of Multiple Perspectives in Scholarship.’ University Affairs / Affaires universitaires 53(2): 38.

Bartlett, Cheryl, Murdena Marshall, Albert Marshall and Marilyn Iwama (2015). ‘Integrative Science and Two-Eyed Seeing: Enriching the Discussion Framework for Healthy Communities.’ In Lars K. Hallstrom, Nicholas Guehlstorf and Margot Parkes (eds), Ecosystems, Society and Health: Pathways through Diversity, Convergence and Integration (Montréal: McGill-Queens University Press), pp. 280-326.

Bartlett, Cheryl, Murdena Marshall and Albert Marshall (2012). ‘Two-Eyed Seeing and Other Lessons Learned within a Co-Learning Journey of Bringing Together Indigenous and Mainstream Knowledges and Ways of Knowing.’ Journal of Environmental Studies and Sciences 2: 331-340.

Dokis, Carly and Benjamin Kelly (2014). ‘Learning to Listen: Reflections on Fieldwork in First Nation Communities in Canada.’ Canadian Association of Research Ethics Boards Pre and Post (Sept): 2-3.

Feit, Harvey A. (2005). ‘Re-Cognizing Co-Management as Co-Governance: Visions and Histories of Conservation at James Bay.’ Anthropologica 47: 267-288.

Hatcher, Annamarie, Cheryl Bartlett, Albert Marshall and Murdena Marshall (2009). ‘Two-Eyed Seeing in the Classroom Environment: Concepts, Approaches, and Challenges.’ Canadian Journal of Science, Mathematics and Technology Education 9(3): 141-153.

Kochan, Jeff (2015). ‘Objective Styles in Northern Field Science.’ Studies in the History and Philosophy of Science 52: 1-12. https://doi.org/10.1016/j.shpsa.2015.04.001

Little Bear, Leroy (2009). Naturalizing Indigenous Knowledge, Synthesis Paper. University of Saskatchewan, Aboriginal Education Research Centre, Saskatoon, Sask. and First Nations and Adult Higher Education Consortium, Calgary, Alta. https://www.afn.ca/uploads/files/education/21._2009_july_ccl-alkc_leroy_littlebear_naturalizing_indigenous_knowledge-report.pdf  [Accessed 05 November 2018]

McGregor, Deborah, Walter Bayha & Deborah Simmons (2010). ‘“Our Responsibility to Keep the Land Alive”: Voices of Northern Indigenous Researchers.’ Pimatisiwin: A Journal of Aboriginal and Indigenous Community Health 8(1): 101-123.

Nadasdy, Paul (2005). ‘The Anti-Politics of TEK: The Institutionalization of Co-Management Discourse and Practice.’ Anthropologica 47: 215-232.

Nicholas, George (2004). ‘What Do I Really Want from a Relationship with Native Americans?’ The SAA Archaeological Record (May): 29-33.

Sandlos, John (2007). Hunters at the Margin: Native People and Wildlife Conservation in the Northwest Territories (Vancouver: UBC Press).

Simmons, Deborah (2010). ‘Residual Stalinism.’ Upping the Anti #11. http://uppingtheanti.org/journal/article/11-residual-stalinism [Accessed 01 November 2018]

Simmons, Deborah, Walter Bayha, Danny Beaulieu, Daniel Gladu & Micheline Manseau (2012). ‘Aboriginal Talking Circle: Aboriginal Perspectives on Caribou Conservation (13th North American Caribou Workshop).’ Rangifer, Special Issue #20: 17-19.

Wills, Bernard (2018). ‘Weak Scientism: The Prosecution Rests.’ Social Epistemology Review & Reply Collective 7(10): 31-36.

Wylie, Alison (2018). ‘Witnessing and Translating: The Indigenous/Science Project.’ Keynote address at the workshop Philosophy, Archaeology and Community Perspectives: Finding New Ground, University of Konstanz, 22 October 2018.

 

Author Information: Raphael Sassower, University of Colorado, Colorado Springs, rsasswe@uccs.edu.

Sassower, Raphael. “Post-Truths and Inconvenient Facts.” Social Epistemology Review and Reply Collective 7, no. 8 (2018): 47-60.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-40g

Can one truly refuse to believe facts?
Image by Oxfam International via Flickr / Creative Commons

 

If nothing else, Steve Fuller has his ear to the pulse of popular culture and the academics who engage in its twists and turns. Starting with Brexit and continuing into the Trump-era abyss, “post-truth” was dubbed by the OED as its word of the year in 2016. Fuller has mustered his collected publications to recast the debate over post-truth and frame it within STS in general and his own contributions to social epistemology in particular.

This could have been a public mea culpa of sorts: we, the community of sociologists (and some straggling philosophers and anthropologists and perhaps some poststructuralists) may seem to someone who isn’t reading our critiques carefully to be partially responsible for legitimating the dismissal of empirical data, evidence-based statements, and the means by which scientific claims can be deemed not only credible but true. Instead, we are dazzled by a range of topics (historically anchored) that explain how we got to Brexit and Trump—yet Fuller’s analyses of them don’t ring alarm bells. There is almost a hidden glee that indeed the privileged scientific establishment, insular scientific discourse, and some of its experts who pontificate authoritative consensus claims are all bound to be undone by the rebellion of mavericks and iconoclasts that include intelligent design promoters and neoliberal freedom fighters.

In what follows, I do not intend to summarize the book, as it is short and entertaining enough for anyone to read on their own. Instead, I wish to outline three interrelated points that one might argue need not be argued but, apparently, do: 1) certain critiques of science have contributed to the Trumpist mindset; 2) the politics of Trumpism is too dangerous to be sanguine about; 3) the post-truth condition is troublesome and insidious. Though Fuller deals with some of these issues, I hope to add some constructive clarification to them.

Part One: Critiques of Science

As Theodor Adorno reminds us, critique is essential not only for philosophy, but also for democracy. He is aware that the “critic becomes a divisive influence, with a totalitarian phrase, a subversive” (1998/1963, 283) insofar as the status quo is being challenged and sacred political institutions might have to change. The price of critique, then, can be high, and therefore critique should be managed carefully and only cautiously deployed. Should we refrain from critique, then? Not at all, continues Adorno.

But if you think that a broad, useful distinction can be offered among different critiques, think again: “[In] the division between responsible critique, namely, that practiced by those who bear public responsibility, and irresponsible critique, namely, that practiced by those who cannot be held accountable for the consequences, critique is already neutralized.” (Ibid. 285) Adorno’s worry is not only that one forgets that “the truth content of critique alone should be that authority [that decides if it’s responsible],” but that when such a criterion is “unilaterally invoked,” critique itself can lose its power and be at the service “of those who oppose the critical spirit of a democratic society.” (Ibid)

In a political setting, the charge of irresponsible critique shuts the conversation down and ensures political hegemony without disruptions. Modifying Adorno’s distinction between (politically) responsible and irresponsible critiques, responsible scientific critiques are constructive insofar as they attempt to improve methods of inquiry, data collection and analysis, and contribute to the accumulated knowledge of a community; irresponsible scientific critiques are those whose goal is to undermine the very quest for objective knowledge and the means by which such knowledge can be ascertained. Questions about the legitimacy of scientific authority are related to but not of exclusive importance for these critiques.

Have those of us committed to the critique of science missed the mark of the distinction between responsible and irresponsible critiques? Have we become so subversive and perhaps self-righteous that science itself has been threatened? Though Fuller is primarily concerned with the hegemony of the sociology of science studies and the movement he has championed under the banner of “social epistemology” since the 1980s, he does acknowledge the Popperians and their critique of scientific progress and even admires the Popperian contribution to the scientific enterprise.

But he is reluctant to recognize the contributions of Marxists, poststructuralists, and postmodernists who have been critically engaging the power of science since the 19th century. Among them, we find Jean-François Lyotard who, in The Postmodern Condition (1984/1979), follows Marxists and neo-Marxists who have regularly lumped science and scientific discourse with capitalism and power. This critical trajectory has been well rehearsed, so suffice it here to say, SSK, SE, and the Edinburgh “Strong Programme” are part of a long and rich critical tradition (whose origins are Marxist). Adorno’s Frankfurt School is part of this tradition, and as we think about science, which had come to dominate Western culture by the 20th century (in the place of religion, whose power had by then waned as the arbiter of truth), it was its privileged power and interlocking financial benefits that drew the ire of critics.

Were these critics “responsible” in Adorno’s political sense? Can they be held accountable for offering (scientific and not political) critiques that improve the scientific process of adjudication between criteria of empirical validity and logical consistency? Not always. Did they realize that their success could throw the baby out with the bathwater? Not always. While Fuller grants Karl Popper the upper hand (as compared to Thomas Kuhn) when indirectly addressing such questions, we must keep an eye on Fuller’s “baby.” It’s easy to overlook the slippage from the political to the scientific and vice versa: Popper’s claim that we never know the Truth doesn’t mean that his (and our) quest for discovering the Truth as such is given up, it’s only made more difficult as whatever is scientifically apprehended as truth remains putative.

Limits to Skepticism

What is precious about the baby—science in general, and scientific discourse and its community in more particular ways—is that it offered safeguards against frivolous skepticism. Robert Merton (1973/1942) famously outlined the four features of the scientific ethos, principles that characterized the ideal workings of the scientific community: universalism, communism (communalism, as per the Cold War terror), disinterestedness, and organized skepticism. It is the last principle that is relevant here, since it unequivocally demands an institutionalized mindset of putative acceptance of any hypothesis or theory that is articulated by any community member.

One detects the slippery slope that would move one from being on guard when engaged with any proposal to being so skeptical as to never accept any proposal no matter how well documented or empirically supported. Al Gore, in his An Inconvenient Truth (2006), sounded the alarm about climate change. A dozen years later we are still plagued by climate-change deniers who refuse to look at the evidence, suggesting instead that the standards of science themselves—from the collection of data in the North Pole to computer simulations—have not been sufficiently fulfilled (“questions remain”) to accept human responsibility for the increase of the earth’s temperature. Incidentally, here is Fuller’s explanation of his own apparent doubt about climate change:

Consider someone like myself who was born in the midst of the Cold War. In my lifetime, scientific predictions surrounding global climate change has [sic.] veered from a deep frozen to an overheated version of the apocalypse, based on a combination of improved data, models and, not least, a geopolitical paradigm shift that has come to downplay the likelihood of a total nuclear war. Why, then, should I not expect a significant, if not comparable, alteration of collective scientific judgement in the rest of my lifetime? (86)

Expecting changes in the model does not entail a) that no improved model can be offered; b) that methodological changes in themselves are a bad thing (they might be, rather, improvements); or c) that one should not take action at all based on the current model because in the future the model might change.

The Royal Society of London (1660) set the benchmark of scientific credibility low when it accepted as scientific evidence any report by two independent witnesses. As the years went by, testability (“confirmation,” for the Vienna Circle, “falsification,” for Popper) and repeatability were added as requirements for a report to be considered scientific, and by now, various other conditions have been proposed. Skepticism, organized or personal, remains at the very heart of the scientific march towards certainty (or at least high probability), but when used perniciously, it has derailed reasonable attempts to use science as a means by which to protect, for example, public health.

Both Michael Bowker (2003) and Robert Proctor (1995) chronicle cases where asbestos and cigarette lobbyists and lawyers alike were able to sow enough doubt in the name of attenuated scientific data collection to ward off regulators, legislators, and the courts for decades. Instead of finding sufficient empirical evidence to attribute asbestos and nicotine to the failing health condition (and death) of workers and consumers, “organized skepticism” was weaponized to fight the sick and protect the interests of large corporations and their insurers.

Instead of buttressing scientific claims (that have passed the tests—in refereed professional conferences and publications, for example—of most institutional scientific skeptics), organized skepticism has been manipulated to ensure that no claim is ever scientific enough or has the legitimacy of the scientific community. In other words, what should have remained the reasonable cautionary tale of a disinterested and communal activity (that could then be deemed universally credible) has turned into a circus of fire-blowing clowns ready to burn down the tent. The public remains confused, not realizing that just because the stakes have risen over the decades does not mean there are no standards that ever can be met. Despite lobbyists’ and lawyers’ best efforts of derailment, courts have eventually found cigarette companies and asbestos manufacturers guilty of exposing workers and consumers to deathly hazards.

Limits to Belief

If we add to this logic of doubt, which has been responsible for discrediting science and the conditions for proposing credible claims, a bit of U.S. cultural history, we may enjoy a more comprehensive picture of the unintended consequences of certain critiques of science. Citing Kurt Andersen (2017), Robert Darnton suggests that the Enlightenment’s “rational individualism interacted with the older Puritan faith in the individual’s inner knowledge of the ways of Providence, and the result was a peculiarly American conviction about everyone’s unmediated access to reality, whether in the natural world or the spiritual world. If we believe it, it must be true.” (2018, 68)

This way of thinking—unmediated experiences and beliefs, unconfirmed observations, and disregard of others’ experiences and beliefs—continues what Richard Hofstadter (1962) dubbed “anti-intellectualism.” For Americans, this predates the republic and is characterized by a hostility towards the life of the mind (admittedly, at the time, religious texts), critical thinking (self-reflection and the rules of logic), and even literacy. The heart (our emotions) can more honestly lead us to the Promised Land, whether it is heaven on earth in the Americas or the Christian afterlife; any textual interference or reflective pondering is necessarily an impediment, one to be suspicious of and avoided.

This lethal combination of the life of the heart and righteous individualism brings about general ignorance and what psychologists call “confirmation bias” (the view that we endorse what we already believe to be true regardless of countervailing evidence). The critique of science, along this trajectory, can be but one of many so-called critiques of anything said or proven by anyone whose ideology we do not endorse. But is this even critique?

Adorno would find this a charade, a pretense that poses as a critique but in reality is a simple dismissal without intellectual engagement, a dogmatic refusal to listen and observe. He definitely would be horrified by Stephen Colbert’s oft-quoted quip on “truthiness” as “the conviction that what you feel to be true must be true.” Even those who resurrect Daniel Patrick Moynihan’s phrase, “You are entitled to your own opinion, but not to your own facts,” quietly admit that his admonishment is ignored by media more popular than informed.

On Responsible Critique

But surely there is merit to responsible critiques of science. Weren’t many of these critiques meant to dethrone the unparalleled authority claimed in the name of science, as Fuller admits all along? Wasn’t Lyotard (and Marx before him), for example, correct in pointing out the conflation of power and money in the scientific vortex that could legitimate whatever profit-maximizers desire? In other words, should scientific discourse be put on par with other discourses?  Whose credibility ought to be challenged, and whose truth claims deserve scrutiny? Can we privilege or distinguish science if it is true, as Monya Baker has reported, that “[m]ore than 70% of researchers have tried and failed to reproduce another scientist’s experiments, and more than half have failed to reproduce their own experiments” (2016, 1)?

Fuller remains silent about these important and responsible questions about the problematics (methodologically and financially) of reproducing scientific experiments. Baker’s report cites Nature‘s survey of 1,576 researchers and reveals “sometimes-contradictory attitudes towards reproducibility. Although 52% of those surveyed agree that there is a significant ‘crisis’ of reproducibility, less than 31% think that failure to reproduce published results means that the result is probably wrong, and most say that they still trust the published literature.” (Ibid.) So, if science relies on reproducibility as a cornerstone of its legitimacy (and superiority over other discourses), and if the results are so dismal, should it not be discredited?

One answer, given by Hans E. Plesser, suggests that there is a confusion between the notions of repeatability (“same team, same experimental setup”), replicability (“different team, same experimental setup”), and reproducibility (“different team, different experimental setup”). If understood in these terms, it stands to reason that one may not get the same results all the time and that this fact alone does not discredit the scientific enterprise as a whole. Nuanced distinctions take us down a scientific rabbit-hole most post-truth advocates refuse to follow. These nuances are lost on a public that demands to know the “bottom line” in brief sound bites: Is science scientific enough, or is it bunk? When can we trust it?

Trump excels at this kind of rhetorical device: repeat a falsehood often enough and people will believe it; and because individual critical faculties are not a prerequisite for citizenship, post-truth means no truth, or whatever the president says is true. Adorno’s distinction of the responsible from the irresponsible political critics comes into play here; but he innocently failed to anticipate the Trumpian move to conflate the political and scientific and pretend as if there is no distinction—methodologically and institutionally—between political and scientific discourses.

With this cultural backdrop, many critiques of science have undermined its authority and thereby lent credence to any dismissal of science (legitimately by insiders and perhaps illegitimately at times by outsiders). Sociologists and postmodernists alike forgot to put warning signs on their academic and intellectual texts: Beware of hasty generalizations! Watch out for wolves in sheep clothes! Don’t throw the baby out with the bathwater!

One would think such advisories unnecessary. Yet without such safeguards, internal disputes and critical investigations appear to have unintentionally discredited the entire scientific enterprise in the eyes of post-truth promoters, the Trumpists whose neoliberal spectacles filter in dollar signs and filter out pollution on the horizon. The discrediting of science has become a welcome distraction that opens the way to radical free-market mentality, spanning from the exploitation of free speech to resource extraction to the debasement of political institutions, from courts of law to unfettered globalization. In this sense, internal (responsible) critiques of the scientific community and its internal politics, for example, unfortunately license external (irresponsible) critiques of science, the kind that obscure the original intent of responsible critiques. Post-truth claims at the behest of corporate interests sanction a free for all where the concentrated power of the few silences the concerns of the many.

Indigenous-allied protestors block the entrance to an oil facility related to the Kinder-Morgan oil pipeline in Alberta.
Image by Peg Hunter via Flickr / Creative Commons

 

Part Two: The Politics of Post-Truth

Fuller begins his book about the post-truth condition that permeates the British and American landscapes with a look at our ancient Greek predecessors. According to him, “Philosophers claim to be seekers of the truth but the matter is not quite so straightforward. Another way to see philosophers is as the ultimate experts in a post-truth world” (19). This means that those historically entrusted to be the guardians of truth in fact “see ‘truth’ for what it is: the name of a brand ever in need of a product which everyone is compelled to buy. This helps to explain why philosophers are most confident appealing to ‘The Truth’ when they are trying to persuade non-philosophers, be they in courtrooms or classrooms.” (Ibid.)

Instead of being the seekers of the truth, thinkers who care not about what but how we think, philosophers are ridiculed by Fuller (himself a philosopher turned sociologist turned popularizer and public relations expert) as marketing hacks in a public relations company that promotes brands. Their serious dedication to finding the criteria by which truth is ascertained is used against them: “[I]t is not simply that philosophers disagree on which propositions are ‘true’ or ‘false’ but more importantly they disagree on what it means to say that something is ‘true’ or ‘false’.” (Ibid.)

Some would argue that the criteria by which propositions are judged to be true or false are worthy of debate, rather than the cavalier dismissal of Trumpists. With criteria in place (even if only by convention), at least we know what we are arguing about, as these criteria (even if contested) offer a starting point for critical scrutiny. And this, I maintain, is a task worth performing, especially in the age of pluralism when multiple perspectives constitute our public stage.

In addition to debasing philosophers, it seems that Fuller reserves a special place in purgatory for Socrates (and Plato) for labeling the rhetorical expertise of the sophists—“the local post-truth merchants in fourth century BC Athens”—negatively. (21) It becomes obvious that Fuller is “on their side” and that the presumed debate over truth and its practices is in fact nothing but “whether its access should be free or restricted.” (Ibid.) In this neoliberal reading, it is all about money: are sophists evil because they charge for their expertise? Is Socrates a martyr and saint because he refused payment for his teaching?

Fuller admits, “Indeed, I would have us see both Plato and the Sophists as post-truth merchants, concerned more with the mix of chance and skill in the construction of truth than with the truth as such.” (Ibid.) One wonders not only if Plato receives fair treatment (reminiscent of Popper’s denigration of Plato as supporting totalitarian regimes, while sparing Socrates as a promoter of democracy), but whether calling all parties to a dispute “post-truth merchants” obliterates relevant differences. In other words, have we indeed lost the desire to find the truth, even if it can never be the whole truth and nothing but the truth?

Political Indifference to Truth

One wonders how far this goes: political discourse without any claim to truth conditions would become nothing but a marketing campaign where money and power dictate the acceptance of the message. Perhaps the intended message here is that contemporary cynicism towards political discourse has its roots in ancient Greece. Regardless, one should worry that such cynicism indirectly sanctions fascism.

Can the poor and marginalized in our society afford this kind of cynicism? For them, unlike their privileged counterparts in the political arena, claims about discrimination and exploitation, about unfair treatment and barriers to voting are true and evidence based; they are not rhetorical flourishes by clever interlocutors.

Yet Fuller would have none of this. For him, political disputes are games:

[B]oth the Sophists and Plato saw politics as a game, which is to say, a field of play involving some measure of both chance and skill. However, the Sophists saw politics primarily as a game of chance whereas Plato saw it as a game of skill. Thus, the sophistically trained client deploys skill in [the] aid of maximizing chance occurrences, which may then be converted into opportunities, while the philosopher-king uses much the same skills to minimize or counteract the workings of chance. (23)

Fuller could be channeling here twentieth-century game theory and its application in the political arena, or the notion offered by Lyotard when describing the minimal contribution we can make to scientific knowledge (where we cannot change the rules of the game but perhaps find a novel “move” to make). Indeed, if politics is deemed a game of chance, then anything goes, and it really should not matter if an incompetent candidate like Trump ends up winning the American presidency.

But is it really a question of skill and chance? Or, as some political philosophers would argue, is it not a question of the best means by which to bring to fruition the best results for the general wellbeing of a community? The point of suggesting the figure of a philosopher-king, to be sure, was not his rhetorical skills in this conjunction, but instead the deep commitment to rule justly, to think critically about policies, and to treat constituents with respect and fairness. Plato’s Republic, however criticized, was supposed to be about justice, not about expediency; it is an exploration of the rule of law and wisdom, not a manual about manipulation. If the recent presidential election in the US taught us anything, it’s that we should be wary of political gamesmanship and focus on experience and knowledge, vision and wisdom.

Out-Gaming Expertise Itself

Fuller would have none of this, either. It seems that there is virtue in being a “post-truther,” someone who can easily switch between knowledge games, unlike the “truther” whose aim is to “strengthen the distinction by making it harder to switch between knowledge games.” (34) In the post-truth realm, then, knowledge claims are lumped into games that can be played at will, that can be substituted when convenient, without a hint of the danger such capricious game-switching might engender.

It’s one thing to challenge a scientific hypothesis about astronomy because the evidence is still unclear (as Stephen Hawking has done in regard to Black Holes) and quite another to compare it to astrology (and give equal hearings to horoscope and Tarot card readers as to physicists). Though we are far from the Demarcation Problem (between science and pseudo-science) of the last century, this does not mean that there is no difference at all between different discourses and their empirical bases (or that the problem itself isn’t worthy of reconsideration in the age of Fuller and Trump).

On the contrary, it’s because we assume difference between discourses (gray as they may be) that we can move on to figure out on what basis our claims can and should rest. The danger, as we see in the political logic of the Trump administration, is that friends become foes (European Union) and foes are admired (North Korea and Russia). Game-switching in this context can lead to a nuclear war.

In Fuller’s hands, though, something else is at work. Speaking of contemporary political circumstances in the UK and the US, he says: “After all, the people who tend to be demonized as ‘post-truth’ – from Brexiteers to Trumpists – have largely managed to outflank the experts at their own game, even if they have yet to succeed in dominating the entire field of play.” (39) Fuller’s celebratory tone here may either bring a slight warning in the use of “yet” before the success “in dominating the entire field of play” or a prediction that indeed this is what is about to happen soon enough.

The neoliberal bottom-line surfaces in this assessment: he who wins must be right, the rich must be smart, and more perniciously, the appeal to truth is beside the point. More specifically, Fuller continues:

My own way of dividing the ‘truthers’ and the ‘post-truthers’ is in terms of whether one plays by the rules of the current knowledge game or one tries to change the rules of the game to one’s advantage. Unlike the truthers, who play by the current rules, the post-truthers want to change the rules. They believe that what passes for truth is relative to the knowledge game one is playing, which means that depending on the game being played, certain parties are advantaged over others. Post-truth in this sense is a recognisably social constructivist position, and many of the arguments deployed to advance ‘alternative facts’ and ‘alternative science’ nowadays betray those origins. They are talking about worlds that could have been and still could be—the stuff of modal power. (Ibid.)

By now one should be terrified. This is a strong endorsement of lying as a matter of course, as a way to distract from the details (and empirical bases) of one “knowledge game”—because it may not be to one’s ideological liking–in favor of another that might be deemed more suitable (for financial or other purposes).

The political stakes here are too high to ignore, especially because there are good reasons why “certain parties are advantaged over others” (say, climate scientists “relative to” climate deniers who have no scientific background or expertise). One wonders what it means to talk about “alternative facts” and “alternative science” in this context: is it a means of obfuscation? Is it yet another license granted by the “social constructivist position” not to acknowledge the legal liability of cigarette companies for the addictive power of nicotine? Or the pollution of water sources in Flint, Michigan?

What Is the Mark of an Open Society?

If we corral the broader political logic at hand to the governance of the scientific community, as Fuller wishes us to do, then we hear the following:

In the past, under the inspiration of Karl Popper, I have argued that fundamental to the governance of science as an ‘open society’ is the right to be wrong (Fuller 2000a: chap. 1). This is an extension of the classical republican ideal that one is truly free to speak their mind only if they can speak with impunity. In the Athenian and the Roman republics, this was made possible by the speakers–that is, the citizens–possessing independent means which allowed them to continue with their private lives even if they are voted down in a public meeting. The underlying intuition of this social arrangement, which is the epistemological basis of Mill’s On Liberty, is that people who are free to speak their minds as individuals are most likely to reach the truth collectively. The entangled histories of politics, economics and knowledge reveal the difficulties in trying to implement this ideal. Nevertheless, in a post-truth world, this general line of thought is not merely endorsed but intensified. (109)

To be clear, Fuller not only asks for the “right to be wrong,” but also for the legitimacy of the claim that “people who are free to speak their minds as individuals are most likely to reach the truth collectively.” The first plea is reasonable enough, as humans are fallible (yes, Popper here), and the history of ideas has proven that killing heretics is counterproductive (and immoral). If the Brexit/Trump post-truth age would only usher a greater encouragement for speculation or conjectures (Popper again), then Fuller’s book would be well-placed in the pantheon of intellectual pluralism; but if this endorsement obliterates the silly from the informed conjecture, then we are in trouble and the ensuing cacophony will turn us all deaf.

The second claim is at best supported by the likes of James Surowiecki (2004) who has argued that no matter how uninformed a crowd of people is, collectively it can guess the correct weight of a cow on stage (his TED talk). As folk wisdom, this is charming; as public policy, this is dangerous. Would you like a random group of people deciding how to store nuclear waste, and where? Would you subject yourself to the judgment of just any collection of people to decide on taking out your appendix or performing triple-bypass surgery?

When we turn to Trump, his supporters certainly like that he speaks his mind, just as Fuller says individuals should be granted the right to speak their minds (even if in error). But speaking one’s mind can also be a proxy for saying whatever, without filters, without critical thinking, or without thinking at all (let alone consulting experts whose very existence seems to upset Fuller). Since when did “speaking your mind” turn into scientific discourse? It’s one thing to encourage dissent and offer reasoned doubt and explore second opinions (as health care professionals and insurers expect), but it’s quite another to share your feelings and demand that they count as scientific authority.

Finally, even if we endorse the view that we “collectively” reach the truth, should we not ask: by what criteria? according to what procedure? under what guidelines? Herd mentality, as Nietzsche already warned us, is problematic at best and immoral at worst. Trump rallies harken back to the fascist ones we recall from Europe prior to and during WWII. Few today would entrust the collective judgment of those enthusiasts of the Thirties to carry the day.

Unlike Fuller’s sanguine posture, I shudder at the possibility that “in a post-truth world, this general line of thought is not merely endorsed but intensified.” This is neither because I worship experts and scorn folk knowledge nor because I have low regard for individuals and their (potentially informative) opinions. Just as we warn our students that simply having an opinion is not enough, that they need to substantiate it, offer data or logical evidence for it, and even know its origins and who promoted it before they made it their own, so I worry about uninformed (even if well-meaning) individuals (and presidents) whose gut will dictate public policy.

This way of unreasonably empowering individuals is dangerous for their own well-being (no paternalism here, just common sense) as well as for the community at large (too many untrained cooks will definitely spoil the broth). For those who doubt my concern, Trump offers ample evidence: trade wars with allies and foes that cost domestic jobs (when promising to bring jobs home), nuclear-war threats that resemble a game of chicken (as if no president before him ever faced such an option), and completely putting into disarray public policy procedures from immigration regulations to the relaxation of emission controls (that ignores the history of these policies and their failures).

Drought and suffering in Arbajahan, Kenya in 2006.
Photo by Brendan Cox and Oxfam International via Flickr / Creative Commons

 

Part Three: Post-Truth Revisited

There is something appealing, even seductive, in the provocation to doubt the truth as rendered by the (scientific) establishment, even as we worry about sowing the seeds of falsehood in the political domain. The history of science is the story of authoritative theories debunked, cherished ideas proven wrong, and claims of certainty falsified. Why not, then, jump on the “post-truth” wagon? Would we not unleash the collective imagination to improve our knowledge and the future of humanity?

One of the lessons of postmodernism (at least as told by Lyotard) is that “post-“ does not mean “after,” but rather, “concurrently,” as another way of thinking all along: just because something is labeled “post-“, as in the case of postsecularism, it doesn’t mean that one way of thinking or practicing has replaced another; it has only displaced it, and both alternatives are still there in broad daylight. Under the rubric of postsecularism, for example, we find religious practices thriving (80% of Americans believe in God, according to a 2018 Pew Research survey), while the number of unaffiliated, atheists, and agnostics is on the rise. Religionists and secularists live side by side, as they always have, more or less agonistically.

In the case of “post-truth,” it seems that one must choose between one orientation or another, or at least for Fuller, who claims to prefer the “post-truth world” to the allegedly hierarchical and submissive world of “truth,” where the dominant establishment shoves its truths down the throats of ignorant and repressed individuals. If post-truth meant, like postsecularism, the realization that truth and provisional or putative truth coexist and are continuously being re-examined, then no conflict would be at play. If Trump’s claims were juxtaposed to those of experts in their respective domains, we would have a lively, and hopefully intelligent, debate. False claims would be debunked, reasonable doubts could be raised, and legitimate concerns might be addressed. But Trump doesn’t consult anyone except his (post-truth) gut, and that is troublesome.

A Problematic Science and Technology Studies

Fuller admits that “STS can be fairly credited with having both routinized in its own research practice and set loose on the general public–if not outright invented—at least four common post-truth tropes”:

  1. Science is what results once a scientific paper is published, not what made it possible for the paper to be published, since the actual conduct of research is always open to multiple countervailing interpretations.
  2. What passes for the ‘truth’ in science is an institutionalised contingency, which if scientists are doing their job will be eventually overturned and replaced, not least because that may be the only way they can get ahead in their fields.
  3. Consensus is not a natural state in science but one that requires manufacture and maintenance, the work of which is easily underestimated because most of it occurs offstage in the peer review process.
  4. Key normative categories of science such as ‘competence’ and ‘expertise’ are moveable feasts, the terms of which are determined by the power dynamics that obtain between specific alignments of interested parties. (43)

In that sense, then, Fuller agrees that the positive lessons STS wished for the practice of the scientific community may have inadvertently found their way into a post-truth world that may abuse or exploit them in unintended ways. That is, something like “consensus” is challenged by STS because of how the scientific community pretends to get there knowing as it does that no such thing can ever be reached and when reached it may have been reached for the wrong reasons (leadership pressure, pharmaceutical funding of conferences and journals). But this can also go too far.

Just because consensus is difficult to reach (it doesn’t mean unanimity) and is susceptible to corruption or bias doesn’t mean that anything goes. Some experimental results are more acceptable than others and some data are more informative than others, and the struggle for agreement may take its political toll on the scientific community, but this need not result in silly ideas about cigarettes being good for our health or that obesity should be encouraged from early childhood.

It seems important to focus on Fuller’s conclusion because it encapsulates my concern with his version of post-truth, a condition he endorses not only in the epistemological plight of humanity but as an elixir with which to cure humanity’s ills:

While some have decried recent post-truth campaigns that resulted in victory for Brexit and Trump as ‘anti-intellectual’ populism, they are better seen as the growth pains of a maturing democratic intelligence, to which the experts will need to adjust over time. Emphasis in this book has been given to the prospect that the lines of intellectual descent that have characterised disciplinary knowledge formation in the academy might come to be seen as the last stand of a political economy based on rent-seeking. (130)

Here, we are not only afforded a moralizing sermon about (and it must be said, from) the academic privileged position, from whose heights all other positions are dismissed as anti-intellectual populism, but we are also entreated to consider the rantings of the know-nothings of the post-truth world as the “growing pains of a maturing democratic intelligence.” Only an apologist would characterize the Trump administration as mature, democratic, or intelligent. Where’s the evidence? What would possibly warrant such generosity?

It’s one thing to challenge “disciplinary knowledge formation” within the academy, and there are no doubt cases deserving reconsideration as to the conditions under which experts should be paid and by whom (“rent-seeking”); but how can these questions about higher education and the troubled relations between the university system and the state (and with the military-industrial complex) give cover to the Trump administration? Here is Fuller’s justification:

One need not pronounce on the specific fates of, say, Brexit or Trump to see that the post-truth condition is here to stay. The post-truth disrespect for established authority is ultimately offset by its conceptual openness to previously ignored people and their ideas. They are encouraged to come to the fore and prove themselves on this expanded field of play. (Ibid)

This, too, is a logical stretch: is disrespect for the authority of the establishment the same as, or does it logically lead to, the “conceptual” openness to previously “ignored people and their ideas”? This is not a claim on behalf of the disenfranchised. Perhaps their ideas were simply bad or outright racist or misogynist (as we see with Trump). Perhaps they were ignored because there was hope that they would change for the better, become more enlightened, not act on their white supremacist prejudices. Should we have “encouraged” explicit anti-Semitism while we were at it?

Limits to Tolerance

We tolerate ignorance because we believe in education and hope to overcome some of it; we tolerate falsehood in the name of eventual correction. But we should never tolerate offensive ideas and beliefs that are harmful to others. Once again, it is one thing to argue about black holes, and quite another to argue about whether black lives matter. It seems reasonable, as Fuller concludes, to say that “In a post-truth utopia, both truth and error are democratised.” It is also reasonable to say that “You will neither be allowed to rest on your laurels nor rest in peace. You will always be forced to have another chance.”

But the conclusion that “Perhaps this is why some people still prefer to play the game of truth, no matter who sets the rules” (130) does not follow. Those who “play the game of truth” are always vigilant about falsehoods and post-truth claims, and to say that they are simply dupes of those in power is both incorrect and dismissive. On the contrary: Socrates was searching for the truth and fought with the sophists, as Popper fought with the logical positivists and the Kuhnians, and as scientists today are searching for the truth and continue to fight superstitions and debunked pseudoscience about vaccination causing autism in young kids.

If post-truth is like postsecularism, scientific and political discourses can inform each other. When power-plays by ignoramus leaders like Trump are obvious, they could shed light on less obvious cases of big pharma leaders or those in charge of the EPA today. In these contexts, inconvenient facts and truths should prevail and the gamesmanship of post-truthers should be exposed for what motivates it.

Contact details: rsassowe@uccs.edu

* Special thanks to Dr. Denise Davis of Brown University, whose contribution to my critical thinking about this topic has been profound.

References

Theodor W. Adorno (1998/1963), Critical Models: Interventions and Catchwords. Translated by Henry W. Pickford. New York: Columbia University Press

Kurt Andersen (2017), Fantasyland: How America Went Hotwire: A 500-Year History. New York: Random House

Monya Baker, “1,500 scientists lift the lid on reproducibility,” Nature Vol. 533, Issue 7604, 5/26/16 (corrected 7/28/16)

Michael Bowker (2003), Fatal Deception: The Untold Story of Asbestos. New York: Rodale.

Robert Darnton, “The Greatest Show on Earth,” New York Review of Books Vo. LXV, No. 11 6/28/18, pp. 68-72.

Al Gore (2006), An Inconvenient Truth: The Planetary Emergency of Global Warming and What Can Be Done About It. New York: Rodale.

Richard Hofstadter (1962), Anti-Intellectualism in American Life. New York: Vintage Books.

Jean- François Lyotard (1984), The Postmodern Condition: A Report on Knowledge. Translated by Geoff Bennington and Brian Massumi. Minneapolis: University of Minnesota Press.

Robert K. Merton (1973/1942), “The Normative Structure of Science,” The Sociology of Science: Theoretical and Empirical Investigations. Chicago and London: The University of Chicago Press, pp. 267-278.

Hans E. Plesser, “Reproducibility vs. Replicability: A Brief History of Confused Terminology,” Frontiers in Neuroinformatics, 2017; 11: 76; online: 1/18/18.

Robert N. Proctor (1995), Cancer Wars: How Politics Shapes What We Know and Don’t Know About Cancer. New York: Basic Books.

James Surowiecki (2004), The Wisdom of Crowds. New York: Anchor Books.

Author Information: Moti Mizrahi, Florida Institute of Technology, mmizrahi@fit.edu

Mizrahi, Moti. “The (Lack of) Evidence for the Kuhnian Image of Science.” Social Epistemology Review and Reply Collective 7, no. 7 (2018): 19-24.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3Z5

See also:

Image by Narcis Sava via Flickr / Creative Commons

 

Whenever the work of an influential philosopher is criticized, a common move made by those who seek to defend the influential philosopher’s work is to claim that his or her ideas have been misconstrued. This is an effective move, of course, for it means that the critics have criticized a straw man, not the ideas actually put forth by the influential philosopher. However, this move can easily backfire, too.

For continued iterations of this move could render the ideas in question immune to criticism in a rather ad hoc fashion. That is to say, shouting “straw man” every time an influential philosopher’s ideas are subjected to scrutiny is rather like shouting “wolf” when none is around; it could be seen as an attempt to draw attention to that which may not be worthy of attention.

The question, then, is whether the influential philosopher’s ideas are worthy of attention and/or acceptance. In particular, are Kuhn’s ideas about scientific revolutions and incommensurability worthy of acceptance? As I have argued, along with a few other contributors to my edited volume, The Kuhnian Image of Science: Time for a Decisive Transformation? (2018), they may not be because they are based on dubious assumptions and fallacious argumentation.

In their reviews of The Kuhnian Image of Science: Time for a Decisive Transformation? (2018), both Markus Arnold (2018) and Amanda Bryant (2018) complain that the contributors who criticize Kuhn’s theory of scientific change have misconstrued his philosophy of science and they praise those who seek to defend the Kuhnian image of science. In what follows, then, I would like to address their claims about misconstruing Kuhn’s theory of scientific change. But my focus here, as in the book, will be the evidence (or lack thereof) for the Kuhnian image of science. I will begin with Arnold’s review and then move on to Bryant’s review.

Arnold on the Evidence for the Kuhnian Image of Science

Arnold (2018, 42) states that “one of the results of [his] review” is that “the ‘inductive reasoning’ intended to refute Kuhn’s incommensurability thesis (found in the first part of the book) is actually its weakest part.” I am not sure what he means by that exactly. First, I am not sure in what sense inductive reasoning can be said to refute a thesis, given that inductive arguments are the sort of arguments whose premises do not necessitate the truth of their conclusions, whereas a refutation of p, if sound, supposedly shows that p must be false.

Second, contrary to what Arnold claims, I do not think that the chapters in Part I of the book contain “‘inductive reasoning’ intended to refute Kuhn’s incommensurability thesis” (Arnold 2018, 42). Speaking of my chapter in particular, Chapter 1 (Mizrahi 2018b, 32-38), it contains two arguments intended to show that there is no deductive support for the Kuhnian thesis of taxonomic incommensurability (Mizrahi 2018b, 32), and an argument intended to show that there is no inductive support for the Kuhnian thesis of taxonomic incommensurability (Mizrahi 2018b, 37).

These arguments are deductive, not inductive, for their premises, if true, guarantee the truth of their conclusions. Besides, to argue that there is no evidence for p is not the same as arguing that p is false. None of my arguments is intended to show that p (namely, the Kuhnian thesis of taxonomic incommensurability) is false.

Rather, my arguments show that there is no evidence for p (namely, the Kuhnian thesis of taxonomic incommensurability). For these reasons, as a criticism of Part I of the book, Arnold’s (2018, 42) claim that “the ‘inductive reasoning’ intended to refute Kuhn’s incommensurability thesis (found in the first part of the book) is actually its weakest part” completely misses the mark.

Moreover, the only thing I could find in Arnold’s review that could be construed as support for this claim is the aforementioned complaint about straw-manning Kuhn. As Arnold (2018, 43) puts it, “the counter-arguments under consideration brought forward against his model seem, paradoxically, to underestimate the complexity of Kuhn’s claims.”

In other words, Kuhn’s theory of scientific change is so complex and those who attempt to criticize it fail to appreciate its complexity. But why? Why do the criticisms fail to appreciate the complexity of Kuhn’s theory? How complex is it such that it defies interpretation and criticism? Arnold does not say. Instead, he (Arnold 2018, 43) states that “it is not clear, why Kuhn’s ‘image of science’ should be dismissed because […] taxonomic incommensurability ‘is the exception rather than the rule’ [Mizrahi 2018b,] (38).”

As I argue in Chapter 1, however, the fact that taxonomic incommensurability “is the exception rather than the rule” (Mizrahi 2018b, 38) means that Kuhn’s theory of scientific change is a bad theory because it shows that Kuhn’s theory has neither explanatory nor predictive power. A “theory” with no explanatory and/or predictive power is no theory at all (Mizrahi 2018b, 37-38). From his review, however, it is clear that Arnold thinks of Kuhn’s image of science as a theory of scientific change.

For instance, he talks about “Kuhn’s epistemology” (Arnold 2018, 45), “Kuhn’s theory of incommensurability” (Arnold 2018, 46), and Kuhn’s “complex theory of science” (Arnold 2018, 42). If Kuhn’s thesis of taxonomic incommensurability has no explanatory and/or predictive power, then it is a bad theory, perhaps not even a theory at all, let alone a general theory of scientific knowledge or scientific change.

In that respect, I found it rather curious that, on the one hand, Arnold approves of Alexandra Argamakova’s (2018) criticism of the universal ambitions of Kuhn’s image of science, but on the other hand, he wants to attribute to Kuhn the view that “scientific revolutions are rare” (Arnold 2018, 43). Arnold quotes with approval Argamakova’s (2018, 54) claim that “distinct breakthroughs in science can be marked as revolutions, but no universal system of criteria for such appraisal can be formulated in a normative philosophical manner” (emphasis added).

In other words, if Argamakova is right, then there can be no philosophical theory of scientific change in general, Kuhnian or otherwise. So Arnold cannot be in agreement with Argamakova without thereby abandoning the claim that Kuhn’s image of science is an “epistemology” (Arnold 2018, 45) of scientific knowledge or a “complex theory of science” (Arnold 2018, 42).

Arnold (2018, 45) also asserts that “the allegation that Kuhn developed his theory on the basis of selected historical cases is refuted” by Kindi (2018). Even if that were true, it would mean that Kuhn’s theory has no inductive support, as I argue in Chapter 1 of the book (Mizrahi 2018b, 32-38). So I am not sure how this point is supposed to help Arnold in defending the Kuhnian image of science. For if there is no inductive support for the Kuhnian image of science, as Arnold seems to think, and there is no deductive support either, as I (Mizrahi 2018b, 25-44) and Park (2018, 61-74) argue, then what evidence is there for the Kuhnian image of science?

For present purposes, the important point is not how Kuhn “developed his theory” (Arnold 2018, 45) but rather what supports his theory of scientific change. What is the evidence for a Kuhnian theory of scientific change? If I am right (Mizrahi 2018b), or if Park (2018) is right, then there is neither deductive support nor inductive support for a Kuhnian theory of scientific change. If Argamakova is right, then there can be no general theory of scientific change at all, Kuhnian or otherwise.

It is also important to note here that Arnold (2018, 45) praises both Kindi (2018) and Patton (2018) for offering “a close reading of Kuhn’s work,” but he does not mention that they offer incompatible interpretations of that work, specifically, of the evidence for Kuhn’s ideas about scientific change. On Kindi’s reading of Kuhn, the argument for the Kuhnian image of science is a deductive argument from first principles, whereas on Patton’s reading of Kuhn, the argument for the Kuhnian image of science is an inference to the best explanation (see Patton 2015, cf. Mizrahi 2018a, 12-13; Mizrahi 2015, 51-53).

Bryant on the Evidence for the Kuhnian Image of Science

Like Arnold, Bryant (2018, 1) wonders whether Kuhn’s views on scientific change can be pinned down and criticized or perhaps there are many “Thomases Kuhn.” Again, I think we do not want to make Kuhn’s views too vague and/or ambiguous (Argamakova 2018, 47-50), and thus immune to criticism in a rather ad hoc fashion. For that, in addition to being based on dubious assumptions and fallacious argumentation, would be another reason to think that Kuhn’s views are not worthy of acceptance.

Bryant (2018, 1) also wonders “whether the so-called Kuhnian image of science is really so broadly endorsed as to be the potential subject of (echoing Kuhn’s own phrase) a ‘decisive transformation’.” As I see it, however, the question is not whether the Kuhnian image of science is “broadly endorsed.” Rather, the question is whether “we are now possessed” by it. When Kuhn wrote that (in)famous first line of the introduction to The Structure of Scientific Revolutions, the image of science by which we were possessed was a positivist image of science according to which science develops “by the accumulation of individual discoveries and inventions” (Kuhn 1962/1996, 2). Arguably, philosophers of science were never possessed by such a positivist image of science as much as they are possessed by the Kuhnian image of science.

This is evidenced by the fact that no positivist work in philosophy of science has had as much impact as Kuhn’s seminal work (Mizrahi 2018a, 1-2). Accordingly, even if the Kuhnian image of science is not “broadly endorsed,” it is quite clear that philosophers of science are possessed by it. For this reason, an “exorcism,” or a “decisive transformation,” is required in order to rid ourselves of this image of science. And what better way to do so than by showing that it is based on dubious assumptions and fallacious argumentation.

As far as the evidence (or lack thereof) for the Kuhnian image of science, Bryant (2018, 2) claims that “Case studies can be interesting, informative, and evidential” (emphasis added). I grant that case studies can be interesting and informative, but I doubt that they can be evidential. From “Scientific episode E has property F,” it does not follow that F is a characteristic of scientific episodes in general. As far as Kuhn is concerned, it is clear that he used just a few case studies (e.g., the phlogiston case) in support of his ideas about scientific change and incommensurability.

The problem with that, as I argue in Chapter 1 of the book (Mizrahi 2018b, 32-38), is that no general theory of scientific change can be derived from a few cherry-picked case studies. Even if we grant that the phlogiston case is a genuine case of a so-called “Kuhnian revolution” and taxonomic incommensurability, despite the fact that there are rebutting defeaters (Mizrahi 2018b, 33-36), no general conclusions about the nature of science can be drawn from one (or even a few) such cases (Mizrahi 2018b, 36-37).

From the fact that one (or a few) cherry-picked episode(s) from the history of science exhibits a particular property, it does not follow that all scientific episodes have that property; otherwise, from the “Piltdown man” episode we would have to conclude that fraud characterizes scientific discovery in general (Mizrahi 2018b, 37-38).

Speaking of scientific discovery, Bryant (2018, 2) takes issue with the fact that I cite “just two authors, Eric Oberheim and Paul Hoyningen-Huene, who use the language of discovery to characterize incommensurability.” For Bryant (2018, 2), this suggests that “it isn’t clear that the assumption Mizrahi takes pains to reject is particularly widespread” (emphasis added). I suppose that “the assumption” in question here is that Kuhn “discovered” incommensurability.

If so, then I would like to clarify that I mention the fact that Oberheim and Hoyningen-Huene talk about incommensurability in terms of discovery, and claim that Kuhn “discovered” it, not to argue against it (i.e., to argue that Kuhn did not discover incommensurability), but rather to show that some of the elements of the Kuhnian image of science, such as incommensurability, are sometimes taken for granted. When it is said that someone has discovered something, it gives the impression that what has been discovered is a fact, and so no arguments are needed.

When it comes to incommensurability, however, it is far from clear that it is a fact about scientific change, and so good arguments are needed in order to establish that episodes of scientific change exhibit taxonomic incommensurability. If I am right, or if Park (2018) and Sankey (2018) are right, then there are no good arguments that establish this.

Not Conclusions, But Questions

In light of the above, I think that the questions raised in the edited volume under review remain urgent (cf. Rehg 2018). Are there good reasons or compelling evidence for the Kuhnian model of theory change in science? If there are no good reasons or compelling evidence for such a model, as I (Mizrahi 2018b), Park (2018), and Sankey (2018) argue, what’s next for philosophers of science? Should we abandon the search for a general theory of science, as Argamakova (2018) suggests? Are there better models of scientific change? Perhaps evolutionary (Marcum 2018) or orthogenetic (Renzi and Napolitano 2018) models?

• • •

I would like to thank Markus Arnold and Amanda Bryant for their thoughtful reviews. I am also grateful to Adam Riggio and Eric Kerr for organizing this book symposium and for inviting me to participate.

Contact details: mmizrahi@fit.edu

References

Argamakova, Alexandra. “Modeling Scientific Development: Lessons from Thomas Kuhn.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 45-59. London: Rowman & Littlefield, 2018.

Arnold, Markus. “Is There Anything Wrong With Thomas Kuhn?” Social Epistemology Review and Reply Collective 7, no. 5 (2018): 42-47.

Bryant, Amanda. “Each Kuhn Mutually Incommensurable.” Social Epistemology Review and Reply Collective 7, no. 6 (2018): 1-7.

Kindi, Vasso. “The Kuhnian Straw Man.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 95-112. London: Rowman & Littlefield, 2018.

Kuhn, Thomas S. The Structure of Scientific Revolutions. Third Edition. Chicago: The University of Chicago Press, 1962/1996.

Marcum, James A. “Revolution or Evolution in Science? A Role for the Incommensurability Thesis?” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 155-173. London: Rowman & Littlefield, 2018.

Mizrahi, Moti. “A Reply to Patton’s ‘Incommensurability and the Bonfire of the Meta-Theories.” Social Epistemology Review and Reply Collective 4, no. 10 (2015): 51-53.

Mizrahi, Moti. “Introduction.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 1-22. London: Rowman & Littlefield, 2018a.

Mizrahi, Moti. “Kuhn’s Incommensurability Thesis: What’s the Argument?” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 25-44. London: Rowman & Littlefield, 2018b.

Park, Seungbae. “Can Kuhn’s Taxonomic Incommensurability be an Image of Science?” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 61-74. London: Rowman & Littlefield, 2018.

Patton, Lydia. “Incommensurability and the Bonfire of the Meta-Theories: Response to Mizrahi.” Social Epistemology Review and Reply Collective 4, no. 7 (2015): 51-58.

Patton, Lydia. “Kuhn, Pedagogy, and Practice: A Local Reading of Structure.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 113-130. London: Rowman & Littlefield, 2018.

Rehg, William. “Kuhn’s Image of Science.” Metascience (2018): https://doi.org/10.1007/s11016-018-0306-2.

Renzi, Barbara G. and Giulio Napolitano. “The Biological Metaphors of Scientific Change.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 177-190. London: Rowman & Littlefield, 2018.

Author Information: James A. Marcum, Baylor University, james_marcum@baylor.edu

Marcum, James A. “A Role for Taxonomic Incommensurability in Evolutionary Philosophy of Science.” Social Epistemology Review and Reply Collective 7, no. 7 (2018): 9-14.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3YP

See also:

Image by Sanofi Pasteur via Flickr / Creative Commons

 

In a review of my chapter (Marcum 2018), Amanda Bryant (2018) charges me with failing to discuss the explanatory role taxonomic incommensurability (TI) plays in my revision of Kuhn’s evolutionary philosophy of science. To quote Bryant at length,

One of Marcum’s central aims is to show that incommensurability plays a key explanatory role in a refined version of Kuhn’s evolutionary image of science. The role of incommensurability on this view is to account for scientific speciation. However, Marcum shows only that we can characterize scientific speciation in terms of incommensurability, without clearly establishing the explanatory payoff of so doing. He does not succeed in showing that incommensurability has a particularly enriching explanatory role, much less that incommensurability is “critical for conceptual evolution within the sciences” or “an essential component of…the growth of science” (168).

Bryant is right. I failed to discuss the explanatory role of TI for the three historical case studies, as listed in Table 8.1, in section 5, “Revising Kuhn’s Evolutionary Image of Science and Incommensurability,” of my chapter. Obviously, my aim in this response, then, is to amend that failure by discussing TI’s role in the case studies and by revising the chapter’s Table to include TI.

Before discussing the role of TI in the historical case studies, I first develop the notion of TI in terms of Kuhn’s revision of the original incommensurability thesis. Kuhn (1983) responded to critics of the original thesis in a symposium paper delivered at the 1982 biannual meeting of the Philosophy of Science Association.

In the paper, Kuhn admitted that his primary intention for incommensurability was more “modest” than with what critics had charged him. Rather than radical or universal changes in terms and concepts—what is often called “global” incommensurability (Hoyningen-Huene 2005, Marcum 2015, Simmons 1994)—Kuhn claimed that only a handful of terms and concepts are incommensurable after a paradigm shift. He called this thesis “local” incommensurability.

More Common Than Incommensurable

Kuhn’s revision of the original incommensurability thesis has important implications for the TI thesis. To that end, I propose three types of TI. The first is comparable to Kuhn’s local incommensurability in which only a small number of terms and concepts are incommensurable, between the lexicons of two scientific specialties. The second is akin to global incommensurability in which two lexicons are radically and universally incommensurable with one another—sharing only a few commensurable terms and concepts.

An example of this type of incommensurability is the construction of a drastically new lexicon accompanying the evolution of a specialty. Both local and global TI represent, then, two poles along a continuum. For the type of TI falling along this continuum, I propose the notion of regional TI—in keeping with the geographical metaphor.

Unfortunately, sharper delineation among the three types of TI in terms of the quantity and quality of incommensurable and commensurable terms and concepts composing taxonomically incommensurable lexicons cannot be made currently, other than local TI comprises one end of the continuum while global TI the other end, with regional TI occupying an intermediate position between them. Notwithstanding this imprecise delineation, the three types of TI are apt for explaining the evolution of the microbiological specialties of bacteriology, virology, and retrovirology, especially with respect to their tempos and modes.

Revised Table. Types of tempo, mode, and taxonomic incommensurability for the evolution of microbiological specialties of bacteriology, virology, and retrovirology (see text for details).

Scientific Specialty Tempo Mode Taxonomic

Incommensurability

 

Bacteriology Bradytelic Phyletic Global

 

Virology Tachytelic Quantal Regional

 

Retrovirology Horotelic Speciation Local

 

 

Examples Bacterial and Viral

As depicted in the Revised Table, the evolution of bacteriology, with its bradytelic tempo and phyletic mode, is best accounted for through global TI. A large number of novel incommensurable terms and concepts appeared with the evolution of bacteriology and the germ theory of disease, and global TI afforded the bacteriology lexicon the conceptual space to evolve fully and independently by isolating that lexicon from both botany and zoology lexicons, as well as from other specialty lexicons in microbiology.

For example, in terms of microbiology as a specialty separate from botany and zoology, bacteria are prokaryotes compared to other microorganisms such as algae, fungi, and protozoa, which are eukaryotes. Eukaryotes have a nucleus surrounded by a plasma membrane that separates the chromosomes from the cytoplasm, while prokaryotes do not. Rather, prokaryotes like bacteria have a single circular chromosome located in the nucleoid region of the cell.

However, the bacteriology lexicon does share a few commensurable terms and concepts with the lexicons of other microbiologic specialties and with the cell biology lexicons of botany and zoology. For example, both prokaryotic and eukaryotic cells contain a plasma membrane that separates the cell’s interior from the external environment. Examples of many other incommensurable (and of a few commensurable) terms and concepts make up the lexicons of these specialties but suffice these examples to provide how global TI provided the bacteriology lexicon a cognitive environment so that it could evolve as a distinct specialty.

Also, as depicted in the Revised Table, the evolution of virology, with its tachytelic tempo and quantal mode, is best accounted for through regional TI. A relatively smaller number of new incommensurable terms and concepts appeared with the evolution of virology compared to the evolution of bacteriology, and regional TI afforded the virology lexicon the conceptual space to evolve freely and self-sufficiently by isolating that lexicon from the bacteriology lexicon, as well as from other biology lexicons.

For example, the genome of the virus is surrounded by a capsid or protein shell, which distinguishes it from both prokaryotes and eukaryotes—neither of which have such a structure. Moreover, viruses do not have a constitutive plasma membrane, although some viruses acquire a plasma membrane from the host cell when exiting it during lysis. However, the function of the viral plasma membrane is different from that for both prokaryotes and eukaryotes.

Interestingly, the term plasma membrane for the virology lexicon is both commensurable and incommensurable, when compared to other biology lexicons. The viral plasma membrane is commensurable in that it is comparable in structure to the plasma membrane of prokaryotes and eukaryotes but it is incommensurable in that it functions differently. Finally, some viral genomes are composed of DNA similar to prokaryotic and eukaryotic genomes while others are composed of RNA; and, it is this RNA genome that led to the evolution of the retrovirology specialty.

Image by AJC1 via Flickr / Creative Commons

And As Seen in the Retrovirological

As depicted lastly in the Revised Table, the evolution of retrovirology, with its horotelic tempo and speciation mode, is best accounted for through local TI. An even smaller number of novel incommensurable terms and concepts accompanied the evolution of retrovirology as compared to the number of novel incommensurable terms and concepts involved in the evolution of the virology lexicon vis-à-vis the bacteriology lexicon.

And, as true for the role of TI in the evolution of bacteriology and virology, local TI afforded the retrovirology lexicon the conceptual space to evolve rather autonomously by isolating that lexicon from the virology and bacteriology lexicons. For example, retroviruses, as noted previously, contain only an RNA genome but the replication of the retrovirus and its genome does not involve replication of the RNA genome from the RNA directly, as for other RNA viruses.

Rather, retrovirus replication involves the formation of a DNA provirus through the enzyme reverse transcriptase. The DNA provirus is subsequently incorporated into the host’s genome, where it remains dormant until replication of the retrovirus is triggered.

The incommensurability associated with retrovirology evolution is local since only a few incommensurable terms and concepts separate the virology and retrovirology lexicons. But that incommensurability was critical for the evolution of the retrovirology specialty (although given how few incommensurable terms and concepts exist between the virology and retrovirology lexicons, a case could be made for retrovirology representing a subspecialty of virology).

Where the Payoff Lies

In her review, Bryant makes a distinction, as quoted above, between characterizing the evolution of the microbiological specialties via TI and explaining their evolution via TI. In terms of the first distinction, TI is the product of the evolution of a specialty and its lexicon. In other words, when reconstructing historically the evolution of a specialty, the evolutionary outcome is a new specialty and its lexicon—which is incommensurable locally, regionally, or globally with respect to other specialty lexicons.

For example, the retrovirology lexicon—when compared to the virology lexicon—has few incommensurable terms, such as DNA provirus and reverse transcriptase. The second distinction involves the process or mechanism by which the evolution of the specialty’s lexicon takes place vis-à-vis TI. In other words, TI plays a critical role in the evolutionary process of a specialty and its lexicon.

Keeping with the retrovirology example, the experimental result that actinomysin D inhibits Rous sarcoma virus was an important anomaly with respect to the virology lexicon, which could only explain the replication of RNA viruses in terms of the Central Dogma’s flow of genetic information. TI, then, represents the mechanism, i.e. by providing the conceptual space, for the evolution of a new specialty with respect to incommensurable terms and concepts.

In conclusion, the “explanatory payoff” for TI with respect to the revised Kuhnian evolutionary philosophy of science is that such incommensurability provides isolation for a scientific specialty and its lexicon so that it can evolve from a parental stock. For, without the conceptual isolation to develop its lexicon, a specialty cannot evolve.

Just as biological species like Darwin’s Galápagos finches, for instance, required physical isolation from one another to evolve (Lack 1983), so the evolving microbiological specialties also required conceptual isolation from one another and from other biology specialties and their lexicons. TI accounts for or explains the evolution of science and its specialties in terms of providing the necessary conceptual opportunity for the specialties to emerge and then to evolve.

Moreover, it is of interest to note that an apparent relationship exists between the various tempos and modes and the different types of TI. For example, the retrovirology case study suggests that local TI is commonly associated with a horotelic tempo and speciation mode—which to some extent makes sense intuitively. In other words, speciation requires far fewer lexical changes than phylogeny, which requires many more lexical changes or an almost completely new lexicon—as the evolution of bacteriology illustrates.

The proposed evolutionary philosophy of science, then, accounts for the emergence of bacteriology in terms of a specific tempo and mode, as well as a particular type of TI; and, it thereby provides a rich explanation for its emergence. Furthermore, the quantity and quality of taxonomically incommensurable terms and concepts involved in the evolution of the microbiology specialties suggest the following relative frequency for the different types of TI: local TI > regional RI > global TI.

The Potential of Evolutionary Paradigms

Finally, I proposed in my chapter that Kuhn’s revised evolutionary philosophy of science is a good candidate for a general philosophy of science, even in light of philosophy of science’s current pluralistic or perspectival stance. Interestingly, regardless of the increasing specialization within the natural sciences (Wray 2005), these sciences are moving towards integration in order to tackle complex natural phenomena. For example, cancer is simply too complex a disease to succumb to a single specialty (Williams 2015).

The revised Kuhnian evolutionary philosophy of science helps to appreciate and account for the drive and need for integration of different scientific specialties to investigate complex natural phenomena, such as cancer. Specifically, one of the important reasons for the integration is that no single scientist can master the necessary lexicons, whether biochemistry, bioinformatics, cell biology, genomic biology, immunology, molecular biology, physiology, etc., needed to investigate and eventually to cure the disease. A scientist might be bilingual or even trilingual with respect to specialties but certainly not multilingual.

The conceptual and methodological approach, which integrates these various specialties, stands a better chance in discovering the pathological mechanisms involved in carcinogenesis and thereby in developing effective therapies. Integrated science, then, requires a systems or network approach since no one scientists can master the various specialties needed to investigate a complex natural phenomenon.

In the end, TI helps to make sense of why integrated science is important for the future evolution of science and of how an evolutionary philosophy of science can function as a general philosophy of science.

Contact details: james_marcum@baylor.edu

References

Bryant, Amanda. “Each Kuhn Mutually Incommensurable”, Social Epistemology Review and Reply Collective 7, no. 6 (2018): 1-7.

Hoyningen-Huene, Paul. “Three Biographies: Kuhn, Feyerabend, and Incommensurability”, In Rhetoric and Incommensurability. Randy A. Harris (ed.), West Lafayette, IN: Parlor Press, (2005): 150-175.

Kuhn, Thomas S. “Commensurability, Comparability, Communicability”, PSA: 1982, no. 2

(1983): 669-688.

Lack, David. Darwin’s Finches. Cambridge: Cambridge University Press, (1983).

Marcum, James A. Thomas Kuhn’s Revolutions: A Historical and an Evolutionary Philosophy of Science. London: Bloomsbury, (2015).

Marcum, James A. “Revolution or Evolution in Science?: A Role for the Incommensurability Thesis?”, In The Kuhnian Image of Science: Time for a Decisive Transformation? Moti Mizrahi (ed.), Lanham, MD: Rowman & Littlefield, (2018): 155-173.

Simmons, Lance. “Three Kinds of Incommensurability Thesis”, American Philosophical Quarterly 31, no. 2 (1994): 119-131.

Williams, Sarah C.P. “News Feature: Capturing Cancer’s Complexity”, Proceedings of the National Academy of Sciences, 112, no. 15 (2015): 4509-4511.

Wray, K. Brad. “Rethinking Scientific Specialization”, Social Studies of Science 35. no. 1 (2005): 151-164.

Author Information: Seungbae Park, Ulsan National Institute of Science and Technology, nature@unist.ac.kr

Park, Seungbae. “Philosophers and Scientists are Social Epistemic Agents.” Social Epistemology Review and Reply Collective 7, no. 6 (2018): 31-40.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3Yo

Please refer to:

The example is from the regime of Hosni Mubarak, but these were the best photos the Digital Editor could find in Creative Commons when he was uploading the piece.

The style of examples common to epistemology, whether social or not, are often innocuous, ordinary situation. But the most critical uses and misuses of knowledge and belief remain all-too-ordinary situations already. If scepticism about our powers to know and believe hold – or are at least held sufficiently – then the most desperate political prisoner has lost her last glimmer of hope. Truth.
Image by Hossam el-Hamalawy via Flickr / Creative Commons

 

In this paper, I reply to Markus Arnold’s comment and Amanda Bryant’s comment on my work “Can Kuhn’s Taxonomic Incommensurability be an Image of Science?” in Moti Mizrahi’s edited collection, The Kuhnian Image of Science: Time for a Decisive Transformation?.

Arnold argues that there is a gap between the editor’s expressed goal and the actual content of the book. Mizrahi states in the introduction that his book aims to increase “our understanding of science as a social, epistemic endeavor” (2018: 7). Arnold objects that it is “not obvious how the strong emphasis on discounting Kuhn’s incommensurability thesis in the first part of the book should lead to a better understanding of science as a social practice” (2018: 46). The first part of the volume includes my work. Admittedly, my work does not explicitly and directly state how it increases our understanding of science as a social enterprise.

Knowledge and Agreement

According to Arnold, an important meaning of incommensurability is “the decision after a long and futile debate to end any further communication as a waste of time since no agreement can be reached,” and it is this “meaning, describing a social phenomenon, which is very common in science” (Arnold, 2018: 46). Arnold has in mind Kuhn’s claim that a scientific revolution is completed not when opposing parties reach an agreement through rational argumentations but when the advocates of the old paradigm die of old age, which means that they do not give up on their paradigm until they die.

I previously argued that given that most recent past paradigms coincide with present paradigms, most present paradigms will also coincide with future paradigms, and hence “taxonomic incommensurability will rarely arise in the future, as it has rarely arisen in the recent past” (Park, 2018: 70). My argument entails that scientists’ decision to end further communications with their opponents has been and will be rare, i.e., such a social phenomenon has been and will be rare.

On my account, the opposite social phenomenon has been and will rather be very common, viz., scientists keep communicating with each other to reach an agreement. Thus, my previous contention about the frequency of scientific revolutions increases our understanding of science as a social enterprise.

Let me now turn to Bryant’s comment on my criticism against Thomas Kuhn’s philosophy of science. Kuhn (1962/1970, 172–173) draws an analogy between the development of science and the evolution of organisms. According to evolutionary theory, organisms do not evolve towards a goal. Similarly, Kuhn argues, science does not develop towards truths. The kinetic theory of heat, for example, is no closer to the truth than the caloric theory of heat is, just as we are no closer to some evolutionary goal than our ancestors were. He claims that this analogy is “very nearly perfect” (1962/1970, 172).

My objection (2018a: 64–66) was that it is self-defeating for Kuhn to use evolutionary theory to justify his philosophical claim about the development of science that present paradigms will be replaced by incommensurable future paradigms. His philosophical view entails that evolutionary theory will be superseded by an incommensurable alternative, and hence evolutionary theory is not trustworthy. Since his philosophical view relies on this untrustworthy theory, it is also untrustworthy, i.e., we ought to reject his philosophical view that present paradigms will be displaced by incommensurable future paradigms.

Bryant replies that “Kuhn could adopt the language of a paradigm (for the purposes of drawing an analogy, no less!) without committing to the literal truth of that paradigm” (2018: 3). On her account, Kuhn could have used the language of evolutionary theory without believing that evolutionary theory is true.

Can We Speak a Truth Without Having to Believe It True?

Bryant’s defense of Kuhn’s position is brilliant. Kuhn would have responded exactly as she has, if he had been exposed to my criticism above. In fact, it is a common view among many philosophers of science that we can adopt the language of a scientific theory without committing to the truth of it.

Bas van Fraassen, for example, states that “acceptance of a theory involves as belief only that it is empirically adequate” (1980: 12). He also states that if “the acceptance is at all strong, it is exhibited in the person’s assumption of the role of explainer” (1980: 12). These sentences indicate that according to van Fraassen, we can invoke a scientific theory for the purpose of explaining phenomena without committing to the truth of it. Rasmus Winther (2009: 376), Gregory Dawes (2013: 68), and Finnur Dellsén (2016: 11) agree with van Fraassen on this account.

I have been pondering this issue for the past several years. The more I reflect upon it, however, the more I am convinced that it is problematic to use the language of a scientific theory without committing to the truth of it. This thesis would be provocative and objectionable to many philosophers, especially to scientific antirealists. So I invite them to consider the following two thought experiments.

First, imagine that an atheist uses the language of Christianity without committing to the truth of it (Park, 2015: 227, 2017a: 60). He is a televangelist, saying on TV, “If you worship God, you’ll go to heaven.” He converts millions of TV viewers into Christianity. As a result, his church flourishes, and he makes millions of dollars a year. To his surprise, however, his followers discover that he is an atheist.

They request him to explain how he could speak as if he were a Christian when he is an atheist. He replies that he can use the language of Christianity without believing that it conveys truths, just as scientific antirealists can use the language of a scientific theory without believing that it conveys the truth.

Second, imagine that scientific realists, who believe that our best scientific theories are true, adopts Kuhn’s philosophical language without committing to Kuhn’s view of science. They say, as Kuhn does, “Successive paradigms are incommensurable, so present and future scientists would not be able to communicate with each other.” Kuhn requests them to explain how they could speak as if they were Kuhnians when they are not Kuhnians. They reply that they can adopt his philosophical language without committing to his view of science, just as scientific antirealists can adopt the language of a scientific theory without committing to the truth of it.

The foregoing two thought experiments are intended to be reductio ad absurdum. That is, my reasoning is that if it is reasonable for scientific antirealists to speak the language of a scientific theory without committing to the truth of it, it should also be reasonable for the atheist to speak the language of Christianity and for scientific realists to speak Kuhn’s philosophical language. It is, however, unreasonable for them to do so.

Let me now diagnose the problems with the atheist’s speech acts and scientific realists’ speech acts. The atheist’s speech acts go contrary to his belief that God does not exist, and scientific realists’ speech acts go contrary to their belief that our best scientific theories are true. As a result, the atheist’s speech acts mislead his followers into believing that he is Christian. The scientific realists’ speech acts mislead their hearers into believing that they are Kuhnians.

Moore’s Paradox

Such speech acts raise an interesting philosophical issue. Imagine that someone says, “Snow is white, but I don’t believe snow is white.” The assertion of such a sentence involves Moore’s paradox. Moore’s paradox arises when we say a sentence of the form, “P, but I don’t believe p” (Moore, 1993: 207–212). We can push the atheist above to be caught in Moore’s paradox. Imagine that he says, “If you worship God, you’ll go to heaven.” We request him to declare whether he believes or not what he just said. He declares, “I don’t believe if you worship God, you’ll go to heaven.” As a result, he is caught in Moore’s paradox, and he only puzzles his audience.

The same is true of the scientific realists above. Imagine that they say, “Successive paradigms are incommensurable, so present and future scientists would not be able to communicate with each other.” We request them to declare whether they believe or not what they just said. They declare, “I don’t believe successive paradigms are incommensurable, so present and future scientists would not be able to communicate with each other.” As a result, they are caught in Moore’s paradox, and they only puzzle their audience.

Kuhn would also be caught in Moore’s paradox if he draws the analogy between the development of science and the evolution of organisms without committing to the truth of evolutionary theory, pace Bryant. Imagine that Kuhn says, “Organisms don’t evolve towards a goal. Similarly, science doesn’t develop towards truths. I, however, don’t believe organisms don’t evolve towards a goal.” He says, “Organisms don’t evolve towards a goal. Similarly, science doesn’t develop towards truths” in order to draw the analogy between the development of science and the evolution of organisms. He says, “I, however, don’t believe organisms don’t evolve towards a goal,” in order to express his refusal to believe that evolutionary theory is true. It is, however, a Moorean sentence: “Organisms don’t evolve towards a goal. I, however, don’t believe organisms don’t evolve towards a goal.” The assertion of such a sentence gives rise to Moore’s paradox.

Scientific antirealists would also be caught in Moore’s paradox, if they explain phenomena in terms of a scientific theory without committing to the truth of it, pace van Fraassen. Imagine that scientific antirealists say, “The space between two galaxies expands because dark energy exists between them, but I don’t believe that dark energy exists between two galaxies.” They say, “The space between two galaxies expands because dark energy exists between them,” in order to explain why the space between galaxies expands.

They add, “I don’t believe that dark energy exists between two galaxies,” in order to express their refusal to commit to the truth of the theoretical claim that dark energy exists. It is, however, a Moorean sentence: “The space between two galaxies expands because dark energy exists between them, but I don’t believe that dark energy exists between two galaxies.” Asserting such a sentence will only puzzle their audience. Consequently, Moore’s paradox bars scientific antirealists from invoking scientific theories to explain phenomena (Park, 2017b: 383, 2018b: Section 4).

Researchers on Moore’s paradox believe that “contradiction is at the heart of the absurdity of saying a Moorean sentence, but it is not obvious wherein contradiction lies” (Park, 2014: 345). Park (2014: 345) argues that when you say, “Snow is white,” your audience believe that you believe that snow is white. Their belief that you believe that snow is white contradicts the second conjunct of your Moorean sentence that you do not believe that snow is white.

Thus, the contradiction lies in your audience’s belief and the second conjunct of your Moorean sentence. The present paper does not aim to flesh out and defend this view of wherein lies the contradiction. It rather aims to show that Moore’s paradox prevents us from using the language of a scientific theory without committing to the truth of it, pace Bryant and van Fraassen.

The Real Consequences of Speaking What You Don’t Believe

Set Moore’s paradox aside. Let me raise another objection to Bryant and van Fraassen. Imagine that Kuhn encounters a philosopher of mind. The philosopher of mind asserts, “A mental state is reducible to a brain state.” Kuhn realizes that the philosopher of mind espouses the identity theory of mind, but he knows that the identity theory of mind has already been refuted by the multiple realizability argument. So he brings up the multiple realizability argument to the philosopher of mind. The philosopher of mind is persuaded of the multiple realizability argument and admits that the identity theory is not tenable.

To Kuhn’s surprise, however, the philosopher of mind claims that when he said, “A mental state is reducible to a brain state,” he spoke the language of the identity theory without committing to the truth of it, so his position is not refuted by Kuhn. Note that the philosopher of mind escapes the refutation of his position by saying that he did not believe what he stated. It is also reasonable for the philosopher of mind to escape the refutation of his position by saying that he did not believe what he stated, if it is reasonable for Kuhn to escape the refutation of his position by saying that he did not believe what he stated. Kuhn would think that it is not reasonable for the philosopher of mind to do so.

Kuhn, however, might bite the bullet, saying that it is reasonable for the philosopher of mind to do so. The strategy to avoid the refutation, Kuhn might continue, only reveals that the identity theory was not his position after all. Evaluating arguments does not require that we identify the beliefs of the authors of arguments. In philosophy, we only need to care about whether arguments are valid or invalid, sound or unsound, strong or weak, and so on.

Speculating about what beliefs the authors of arguments hold as a way of evaluating arguments is to implicitly rely on an argument from authority, i.e., it is to think as though the authors’ beliefs determine the strength of arguments rather than the form and content of arguments do.

We, however, need to consider under what conditions we accept the conclusion of an argument in general. We accept it, when premises are plausible and when the conclusion follows from the premises. We can tell whether the conclusion follows from the premises or not without the author’s belief that it does. In many cases, however, we cannot tell whether premises are plausible or not without the author’s belief that they are.

Imagine, for example, that a witness states in court that a defendant is guilty because the defendant was in the crime scene. The judge can tell whether the conclusion follows from the premise or not without the witness’s belief that it does. The judge, however, cannot tell whether the premise is plausible or not without the witness’s belief that it is. Imagine that the witness says that the defendant is guilty because the defendant was in the crime scene, but that the witness declares that he does not believe that the defendant was in the crime scene. Since the witness does not believe that the premise is true, the judge has no reason to believe that it is true. It is unreasonable for the judge to evaluate the witness’s argument independently of whether the witness believes or not that the premise is true.

In a nutshell, an argument loses its persuasive force, if the author of the argument does not believe that premises are true. Thus, if you aim to convince your audience that your argument is cogent, you should believe yourself that the premises are true. If you declare that you do not believe that the premises are true, your audience will ask you some disconcerting questions: “If you don’t, why should I believe what you don’t? How can you say to me what you don’t believe? Do you expect me to believe what you don’t?” (Park, 2018b: Section 4).

In case you still think that it is harmless and legitimate to speak what you do not believe, I invite you to imagine that your political rival commits murder to frame you. A false charge is brought to you, and you are tried in court. The prosecutor has a strong indictment against you. You state vehemently that you did not commit murder. You, however, have no physical evidence supporting your statement. Furthermore, you are well-known as a person who speaks vehemently what you do not believe. Not surprisingly, the judge issues a death sentence on you, thinking that you are merely speaking the language of the innocent. The point of this sad story is that speaking what you do not believe may result in a tragedy in certain cases.

A Solution With a Prestigious Inspiration

Let me now turn to a slightly different, but related, issue. Under what condition can I refute your belief when you speak contrary to what you believe? I can do it only when I have direct access to your doxastic states, i.e., only when I can identify your beliefs without the mediation of your language. It is not enough for me to interpret your language correctly and present powerful evidence against what your language conveys.

After all, whenever I present such evidence to you, you will escape the refutation of what you stated simply by saying that you did not believe what you stated. Thus, Bryant’s defense of Kuhn’s position from my criticism above amounts to imposing an excessively high epistemic standard on Kuhn’s opponents. After all, his opponents do not have direct access to his doxastic states.

In this context, it is useful to be reminded of the epistemic imperative: “Act only on an epistemic maxim through which you can at the same time will that it should become a universal one” (Park, 2018c: 3). Consider the maxim “Escape the refutation of your position by saying you didn’t believe what you stated.” If you cannot will this maxim to become a universal one, you ought not to act on it yourself. It is immoral for you to act on the maxim despite the fact that you cannot will it to become a universal maxim. Thus, the epistemic imperative can be invoked to argue that Kuhn ought not to use the language of evolutionary theory without committing to the truth of it, pace Bryant.

Let me now raise a slightly different, although related, issue. Recall that according to Bryant, Kuhn could adopt the language of evolutionary theory without committing to the truth of it. Admittedly, there is an epistemic advantage of not committing to the truth of evolutionary theory on Kuhn’s part. The advantage is that he might avoid the risk of forming a false belief regarding evolutionary theory. Yet, he can stick to his philosophical account of science according to which science does not develop towards truths, and current scientific theories will be supplanted by incommensurable alternatives.

There is, however, an epistemic disadvantage of not committing to the truth of a scientific theory. Imagine that Kuhn is not only a philosopher and historian of science but also a scientist. He has worked hard for several decades to solve a scientific problem that has been plaguing an old scientific theory. Finally, he hits upon a great scientific theory that handles the recalcitrant problem. His scientific colleagues reject the old scientific theory and accept his new scientific theory, i.e., a scientific revolution occurs.

He becomes famous not only among scientists but also among the general public. He is so excited about his new scientific theory that he believes that it is true. Some philosophers, however, come along and dispirit him by saying that they do not believe that his new theory is true, and that they do not even believe that it is closer to the truth than its predecessor was. Kuhn protests that his new theory has theoretical virtues, such as accuracy, simplicity, and fruitfulness. Not impressed by these virtues, however, the philosophers reply that science does not develop towards truths, and that his theory will be displaced by an incommensurable alternative. They were exposed to Kuhn’s philosophical account of science!

Epistemic Reciprocation

They have adopted a philosophical position called epistemic reciprocalism according to which “we ought to treat our epistemic colleagues, as they treat their epistemic agents” (Park, 2017a: 57). Epistemic reciprocalists are scientific antirealists’ true adversaries. Scientific antirealists refuse to believe that their epistemic colleagues’ scientific theories are true for fear that they might form false beliefs.

In return, epistemic reciprocalists refuse to believe that scientific antirealists’ positive theories are true for fear that they might form false beliefs. We, as epistemic agents, are not only interested in avoiding false beliefs but also in propagating “to others our own theories which we are confident about” (Park, 2017a: 58). Scientific antirealists achieve the first epistemic goal at the cost of the second epistemic goal.

Epistemic reciprocalism is built upon the foundation of social epistemology, which claims that we are not asocial epistemic agents but social epistemic agents. Social epistemic agents are those who interact with each other over the matters of what to believe and what not to believe. So they take into account how their interlocutors treat their epistemic colleagues before taking epistemic attitudes towards their interlocutors’ positive theories.

Let me now turn to another of Bryant’s defenses of Kuhn’s position. She says that it is not clear that the analogy between the evolution of organisms and the development of science is integral to Kuhn’s account. Kuhn could “have ascribed the same characteristics to theory change without referring to evolutionary theory at all” (Bryant, 2018: 3). In other words, Kuhn’s contention that science does not develop towards truths rises or falls independently of the analogy between the development of science and the evolution of organisms. Again, this defense of Kuhn’s position is brilliant.

Consider, however, that the development of science is analogous to the evolution of organisms, regardless of whether Kuhn makes use of the analogy to defend his philosophical account of science or not, and that the fact that they are analogous is a strike against Kuhn’s philosophical account of science. Suppose that Kuhn believes that science does not develop towards truths, but that he does not believe that organisms do not evolve towards a goal, despite the fact that the development of science is analogous to the evolution of organisms.

An immediate objection to his position is that it is not clear on what grounds he embraces the philosophical claim about science, but not the scientific claim about organisms, when the two claims parallel each other. It is ad hoc merely to suggest that the scientific claim is untrustworthy, but that the philosophical claim is trustworthy. What is so untrustworthy about the scientific claim, but so trustworthy about the philosophical claim? It would be difficult to answer these questions because the development of science and the evolution of organisms are similar to each other.

A moral is that if philosophers reject our best scientific theories, they cannot make philosophical claims that are similar to what our best scientific theories assert. In general, the more philosophers reject scientific claims, the more impoverished their philosophical positions will be, and the heavier their burdens will be to prove that their philosophical claims are dissimilar to the scientific claims that they reject.

Moreover, it is not clear what Kuhn could say to scientists who take the opposite position in response to him. They believe that organisms do not evolve towards a goal, but refuse to believe that science does not develop towards truths. To go further, they trust scientific claims, but distrust philosophical claims. They protest that it is a manifestation of philosophical arrogance to suppose that philosophical claims are worthy of beliefs, but scientific claims are not.

This possible response to Kuhn reminds us of the Golden Rule: Treat others as you want to be treated. Philosophers ought to treat scientists as they want to be treated, concerning epistemic matters. Suppose that a scientific claim is similar to a philosophical claim. If philosophers do not want scientists to hold a double standard with respect to the scientific and philosophical claims, philosophers should not hold a double standard with respect to them.

There “is no reason for thinking that the Golden Rule ranges over moral matters, but not over epistemic matters” (Park, 2018d: 77–78). Again, we are not asocial epistemic agents but social epistemic agents. As such, we ought to behave in accordance with the epistemic norms governing the behavior of social epistemic agents.

Finally, the present paper is intended to be critical of Kuhn’s philosophy of science while enshrining his insight that science is a social enterprise, and that scientists are social epistemic agents. I appealed to Moore’s paradox, epistemic reciprocalism, the epistemic imperative, and the Golden Rule in order to undermine Bryant’s defenses of Kuhn’s position from my criticism. All these theoretical resources can be used to increase our understanding of science as a social endeavor. Let me add to Kuhn’s insight that philosophers are also social epistemic agents.

Contact details: nature@unist.ac.kr

References

Arnold, Markus. “Is There Anything Wrong with Thomas Kuhn?”, Social Epistemology Review and Reply Collective 7, no. 5 (2018): 42–47.

Byrant, Amanda. “Each Kuhn Mutually Incommensurable”, Social Epistemology Review and Reply Collective 7, no. 6 (2018): 1–7.

Dawes, Gregory. “Belief is Not the Issue: A Defence of Inference to the Best Explanation”, Ratio: An International Journal of Analytic Philosophy 26, no. 1 (2013): 62–78.

Dellsén, Finnur. “Understanding without Justification or Belief”, Ratio: An International Journal of Analytic Philosophy (2016). DOI: 10.1111/rati.12134.

Kuhn, Thomas. The Structure of Scientific Revolutions. 2nd ed. The University of Chicago Press, (1962/1970).

Mizrahi, Moti. “Introduction”, In The Kuhnian Image of Science: Time for a Decisive Transformation? Moti Mizrahi (ed.), London: Rowman & Littlefield, (2018): 1–22.

Moore, George. “Moore’s Paradox”, In G.E. Moore: Selected Writings. Baldwin, Thomas (ed.), London: Routledge, (1993).

Park, Seungbae. “On the Relationship between Speech Acts and Psychological States”, Pragmatics and Cognition 22, no. 3 (2014): 340–351.

Park, Seungbae. “Accepting Our Best Scientific Theories”, Filosofija. Sociologija 26, no. 3 (2015): 218–227.

Park, Seungbae. “Defense of Epistemic Reciprocalism”, Filosofija. Sociologija 28, no. 1 (2017a): 56–64.

Park, Seungbae. “Understanding without Justification and Belief?” Principia: An International Journal of Epistemology 21, no. 3 (2017b): 379–389.

Park, Seungbae. “Can Kuhn’s Taxonomic Incommensurability Be an Image of Science?” In The Kuhnian Image of Science: Time for a Decisive Transformation? Moti Mizrahi (ed.), London: Rowman & Littlefield, (2018a): 61–74.

Park, Seungbae. “Should Scientists Embrace Scientific Realism or Antirealism?”, Philosophical Forum (2018b): (to be assigned).

Park, Seungbae. “In Defense of the Epistemic Imperative”, Axiomathes (2018c). DOI: https://doi.org/10.1007/s10516-018-9371-9.

Park, Seungbae. “The Pessimistic Induction and the Golden Rule”, Problemos 93 (2018d): 70–80.

van Fraassen, Bas. The Scientific Image. Oxford: Oxford University Press, (1980).

Winther, Rasmus. “A Dialogue”, Metascience 18 (2009): 370–379.

Author Information: Amanda Bryant, Trent University, amandabryant@trentu.ca

Bryant, Amanda. “Each Kuhn Mutually Incommensurable.” Social Epistemology Review and Reply Collective 7, no. 6 (2018): 1-7.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3XM

Image by Denis Defreyne via Flickr / Creative Commons

 

This volume is divided into four parts, in which its contributors variously Question, Defend, Revise, or Abandon the Kuhnian image of science. One immediately wonders: what is this thing, the Kuhnian Image of Science? It isn’t a question that can be decisively or quickly settled, of course. Perhaps one of the reasons why so much has been written on Kuhn’s philosophy of science is that it gives rise to such rich interpretive challenges.

Informed general philosophy of science readers will of course know the tagline version of Kuhn’s view — namely, that the development of science unfolds in wholesale revolutions of scientific paradigms that are in some sense incommensurable with one another. However, one might think that whatever the image of science at issue in this volume is, it should be a sharper image than that.

Many Thomases Kuhn

But of course there isn’t really a single, substantive, cohesive, uncontroversial image at issue. Alexandra Argamakova rightly points out in her contribution, “there exist various images of science belonging to different Thomas Kuhns at different stages of his work life and from different perspectives of interpretation, so the target for current analysis turns out to be less detectable” (46). Rather, the contributors touch on various aspects of Kuhn’s philosophy, variously interpreted — and as such, multiple Kuhnian images emerge as the volume unfolds. That’s just as it should be. In fact, if the volume had propped up some caricature of Kuhn’s views as the Kuhnian image of science, it would have done a disservice both to Kuhn and to his many interpreters.

One wonders, too, whether the so-called Kuhnian image of science is really so broadly endorsed as to be the potential subject of (echoing Kuhn’s own phrase) a ‘decisive transformation’. In his introduction, Moti Mizrahi emphasizes Kuhn’s undeniable influence. Kuhn has, Mizrahi points out, literally tens of thousands of citations; numerous books, articles, and journal issues devoted to his work; and a lasting legacy in the language of academic and public discourse. While all of this signals influence, it’s clearly no indication of agreement.

To be fair, Mizrahi acknowledges the “fair share” of Kuhn critics (2). Nevertheless, if the prospect of decisively transforming the Kuhnian image of science were to be a serious prospect, then the image would have to be widely accepted and enjoy a lasting relevance. However, Argamakova again rightly emphasizes that Kuhn’s philosophy of science “never fully captured the intellectual market” (45) and “could not be less attractive for so many minds!” (47). Moreover, in a remarkable passage in his contribution, Howard Sankey describes a central component of the so-called Kuhnian image of science as as an old battlefield and a dead issue:

Returning to the topic from the perspective of the contemporary scene in the philosophy of science is like visiting a battlefield from a forgotten war. The positions of the warring sides may still be made out. But the battlefield is grown over with grass. One may find evidence of the fighting that once took place, perhaps bullet marks or shell holes. But the fighting ceased long ago. The battle is a thing of the past.

The problem of incommensurability is no longer a live issue. The present chapter has taken the form of a post-mortem examination of a once hotly debated but now largely forgotten problem from an earlier period in the philosophy of science. (87)

If the same holds true for the rest of the Kuhnian image (or images), then the volume isn’t exactly timely.

But dead philosophical issues don’t always stay dead. Or rather, we’re not always right to pronounce them dead. In 1984, Arthur Fine famously proclaimed scientific realism “well and truly dead” (in The Natural Ontological Attitude), and clearly he was quite wrong. At any rate, we may find interest in an issue, dead or not, and there is certainly much of it to be found in this volume. I have been asked to focus my comments on the second half of the book. As such, I will discuss the Introduction, as well as Parts I and II in brief, then I will discuss parts III and IV at greater length.

On the Incommensurable

In his Introduction, Mizrahi argues that, far from initiating a historical turn in the philosophy of science, Kuhn was ‘patient zero’ for anecdotiasis — “the tendency to use cherry-picked anecdotes or case studies… to support general claims (about the nature of science as a whole)” (3). Mizrahi argues that anecdotiasis is pervasive, since significant proportions of articles in the PhilSci-Archive and in leading philosophy of science journals contain the phrase ‘case study’.

But neither using the phrase ‘case study’ nor doing case studies is inherently or self-evidently problematic. Case studies can be interesting, informative, and evidential. Of course the challenges are not to ignore relevant problem cases, not to generalize hastily, and not to assign undue evidential weight to them. But if we are to suppose that all or most philosophers of science who use case studies fail to meet those challenges, we will need a substantial body of evidence.

Part I begins with Mizrahi’s contribution, which the successive contributions all engage. In it, he defines taxonomic incommensurability as conceptual incompatibility between new and old theories. Against those who claim that Kuhn ‘discovered’ incommensurability, Mizrahi argues that there are no good deductive or inductive arguments for taxonomic incommensurability. He cites just two authors, Eric Oberheim and Paul Hoyningen-Huene, who use the language of discovery to characterize incommensurability. As such, it isn’t clear that the assumption Mizrahi takes pains to reject is particularly widespread.

Nevertheless, even if everyone universally agreed that there are no legitimate cases of incommensurability, it would still be useful to know why they’d be justified in so thinking. So the work that Mizrahi does to establish his conclusion is valuable. He shows the dubious sorts of assumptions that arguments for the taxonomic incommensurability thesis would hang on.

Argamakova’s helpful and clear contribution lays out three general types of critique with respect to Kuhn’s view of scientific development — ambiguity, inaccuracy, and limitation — and raises, if tentatively, concerns about Kuhn’s universalist ambitions. She might have been more explicit with respect to the force and scope of her comments on universalism — in particular, whether she sees the flaws in Kuhn’s theory as ultimately stemming from his attempts at universal generalizations, and to what extent her concerns extend beyond Kuhn to general philosophy of science.

Seungbae Park advances several arguments in response to Kuhn’s incommensurability thesis. One such argument takes up Kuhn’s analogy in The Structure of Scientific Revolutions (henceforth Structure) between the development of science and the evolution of organisms. Park suggests that in drawing the analogy, Kuhn illicitly assumes the truth of evolutionary theory. He doesn’t consider that Kuhn could adopt the language of a paradigm (for the purposes of drawing an analogy, no less!) without committing to the literal truth of that paradigm.

Park also claims that “it is self-defeating for Kuhn to invoke a scientific theory to give an account of science that discredits scientific claims” (66), when it’s not clear that the analogy is at all integral to Kuhn’s account. Kuhn could, for instance, have ascribed the same characteristics to theory change without referring to evolutionary theory at all.

Sankey’s illuminating contribution fills in the interpretive background on incommensurability — the semantic version of Kuhn’s incommensurability thesis, in particular. He objects, with Mizrahi, to the language of discovery used by Oberheim and Hoyningen-Huene with respect to incommensurability. He argues, convincingly, that the purported paradigm shift that allowed Kuhn to finally comprehend Aristotle’s physics isn’t a case of incommensurability, but rather of comprehension after an initial failure to understand. While this doesn’t establish his conclusion that no cases of incommensurability have been established (76), it does show that a historically significant purported case is not genuine.

Vasso Kindi fills in some historical detail regarding the positivist image of science that Kuhn sought to replace and the “stereotypical” image attributed to him (96). She argues that Kuhn’s critics (including by implication several of her co-contributors) frequently attack a strawman — that, notwithstanding Kuhn’s avowed deference to history, the Kuhnian image of science is not meant to be a historical representation, and so doesn’t need to be supported by historical evidence. It is, rather, a “a philosophical model that was used to challenge an ideal image of science” (95).

Finally, Lydia Patton emphasizes the practical dimension of Kuhn’s conception of paradigms in Structure. It ought to be uncontroversial that on Kuhn’s early characterization a paradigm is not merely a theory, but a series of epistemic, evaluative, and methodological practices, too. But Patton argues that there has been too strong a semantic tendency in the treatment of Kuhnian paradigms (including by the later Kuhn himself). She argues for the greater interest and value of a practical lens on Kuhn’s project for the purposes of understanding and explaining science.

Vectors of Glory

Andrew Aberdein’s contribution deals with the longstanding and intriguing question of whether there are revolutions in mathematics. He imports to that discussion distinctions he drew in previous work among so-called glorious, inglorious, and paraglorious revolutions, in which, respectively, key components of the theory are preserved, lost, or preserved with new additions. Key components are, he says, “at least all components without which the theory could not be articulated” (136).

He discusses several examples of key shifts in mathematical theory and practice that putatively exemplify certain of these classes of revolution. The strength of the paper is its fascinating examples, particularly the example of Inter-Universal Teichmüller theory, which, Aberdein explains, introduces such novel techniques and concepts that some leading mathematicians say its proofs read as if they were “from the future, or from outer space” (145).

Aberdein doesn’t falsely advertise his thesis. He acknowledges that “it is not easy to determine whether a given episode is revolutionary” (140), and claims only that certain shifts “may be understood” as revolutionary (149) — that the cases he offers are putative mathematical revolutions. As to how we should go about identifying putative mathematical revolutions, Aberdein suggests we look directly for conceptual shifts (or ‘sorites-like’ sequences of shifts) in which key components have been lost or gained.

A fuller discussion of these diagnostics is needed, since the judgment of whether there are revolutions (genuine or putative) in mathematics will hang largely on diagnostics such as these. Is any key conceptual shift sufficient? If so, have we really captured the spirit of Kuhn’s view, given that Kuhn seems to ascribe a certain momentousness to revolutions? If the conceptual shift has to be substantial, how substantial, and how should we gauge its substantiality? Without some principled, non-arbitrary, and non-question-begging standards for what counts as a revolution, we cannot hope to give a serious answer to the question of whether there are, even putatively, revolutions in mathematics.

The paper would also have benefited from a more explicit discussion of what a mathematical paradigm is in the first place, especially as compared to a scientific one. We can infer from Aberdein’s examples that conceptions of number, ratio, proportion, as well as systems of conjecture and mathematical techniques belong to mathematical paradigms — but explicit comment on this would have been beneficial.

Moreover, Aberdein sees an affinity between mathematics and science, commenting toward the end of the paper that the methodology of mathematics is not so different from that of science, and that “the story we tell about revolutions [should] hold for both science and mathematics” (149). These are loaded comments needing further elaboration.

The Evolution of Thomas Kuhn

In his contribution, James Marcum argues that Kuhn’s later evolutionary view is more relevant to current philosophy of science (being ‘pluralistic and perspectival’) than his earlier revolutionary one. On Kuhn’s later evolutionary view, Marcum explains, scientific change proceeds via “smaller evolutionary specialization or speciation” (155), with a “gradual emergence of a specialty’s practice and knowledge” (159). On this view, scientific development consists in “small incremental changes of belief” rather than “the upheaval of world-shattering revolutions” (159).

Marcum uses the emergence of bacteriology, virology, and retrovirology to illustrate the strengths and weaknesses of Kuhn’s evolutionary view. Its main strength, he says, is that it illuminates the development of and relationships among these sorts of scientific specialties; its weakness is that it ascribes a single tempo — Darwinian gradualism — and a single mode — speciation — to the evolution of science. Marcum adopts George Gaylord Simpson’s “richer and more textured approach” (165), which distinguishes several tempos and modes. Since these refinements better enable Kuhn’s view to handle a range of cases, they are certainly valuable.

According to Marcum, current philosophy of science is ‘pluralistic and perspectival’ in its recognition that different sciences face different philosophical issues and in its inclusion of perspectives from outside the logico-analytic tradition, such as continental, pragmatist, and feminist perspectives (166). Marcum seems right to characterize current philosophy of science as pluralistic, given the move away from general philosophy of science to more specialized branches.

If this pluralism is to be embraced, one might wonder what role (if any) remains for general philosophy of science. Marcum makes the interesting suggestion that a general image of science, like Kuhn’s evolutionary image, while respecting our contemporary pluralistic stance, can at the same time offer “a type of unity among the sciences, not in terms of reducing them to one science, but rather with respect to mapping the conceptual relationships among them” (169).

One of Marcum’s central aims is to show that incommensurability plays a key explanatory role in a refined version of Kuhn’s evolutionary image of science. The role of incommensurability on this view is to account for scientific speciation. However, Marcum shows only that we can characterize scientific speciation in terms of incommensurability, without clearly establishing the explanatory payoff of so doing. He does not succeed in showing that incommensurability has a particularly enriching explanatory role, much less that incommensurability is “critical for conceptual evolution within the sciences” or “an essential component of… the growth of science” (168).

All a Metaphor?

Barbara Gabriella Renzi and Giulio Napolitano frame their contribution with a discussion of competing accounts of the nature and role of metaphor. They avow the commonly accepted view that metaphors are not merely linguistic, but cognitive, and that they are ubiquitous. They claim, I would think uncontroversially, that metaphors shape how individuals approach and reason about complex issues. They also discuss historical empiricist attitudes toward metaphor, competing views on the role of models and metaphor in science, and later, the potential role of metaphor in social domination.

Renzi and Napolitano also address Kuhn’s use of the metaphor of Darwinian evolution to characterize scientific change. They suggest that an apter metaphor for scientific change can be made of the obsolete orthogenetic hypothesis, according to which “variations are not random but directed by forces regulated and ultimately directed by the internal constitution of the organism, which responds to environmental stimuli” (184).

The orthogenetic metaphor is a better fit for scientific change, they argue, because the emergence of new ideas in science is not random, but driven by “arguments and debates… specific needs of a scientist or group of scientists who have been seeking a solution to a problem” (184).

The orthogenetic metaphor effectively highlights a drawback of the Darwinian metaphor that might otherwise be overlooked, and deserves further attention. The space devoted to discussing metaphor in the abstract contributes little to the paper, beyond prescriptions to take metaphor seriously and approach it with caution. Much of that space would have been better devoted to using historical examples to compare Kuhn’s Darwinian metaphor to the proposed orthogenetic alternative, to make concrete the fruitfulness of the latter, and to flesh out the specific kinds of internal and external pressures that Renzi and Napolitano see as important drivers of scientific change.

Methodological Contextualism

Darrell Rowbottom offers a summary and several criticisms of what he sees as Kuhn’s early-middle period image of science. By way of criticism, he points out that it isn’t clear how to individuate disciplinary matrices in a way that preserves a clear distinction between normal and extraordinary science, or ensures that what Kuhn calls ‘normal science’ is really the norm. Moreover, in linking the descriptive and normative components of his view, Kuhn implausibly assumes that mature science is optimal.

Rowbottom suggests a replacement image of science he calls methodological contextualism (developed more fully in previous work). Methodological contextualism identifies several roles — puzzle-solving, critical, and imaginative — which scientific practitioners fulfill to varying degrees and in varying combinations. The ideal balance of these roles depends on contextual factors, including the scientists available and the state of science (200).

The novel question Rowbottom considers in this paper is: how could piecemeal change in science be rational from the perspective of methodological contextualism? I have difficulty seeing why this is even a prima facie problem for Rowbottom’s view, since puzzle-solving, critical and imaginative activities are clearly consonant with piecemeal change. I suppose it is because the view retains some of Kuhn’s machinery, including his notion of a disciplinary matrix.

At any rate, Rowbottom suggests that scientists may work within a partial disciplinary matrix, or a set of partially overlapping ones. He also makes the intriguing claim that “scientists might allow inconsistency at the global level, and even welcome it as a better alternative than a consistent system with less puzzle-solving power” (202). One might object that Kuhn’s incommensurability thesis seems to block the overlapping matrix move, but Rowbottom proclaims that the falsity of Kuhn’s incommensurability thesis follows “as a consequence of the way that piecemeal change can occur” (201). One person’s modus ponens is another’s modus tollens, as they say.

A Digestible Kuhn

The brevity of the contributions makes them eminently digestible and good potential additions to course syllabi at a range of levels; on the other hand, it means that some of the most provocative and topical themes of the book — such as the epistemic and methodological status of generalizations about science and the role of general philosophy of science in contemporary philosophy — don’t get the full development they deserve. The volume raises more questions than it satisfactorily addresses, but several of them bring renewed relevance and freshness to Kuhnian philosophy of science and ought to direct its future course.

Contact details: amandabryant@trentu.ca

References

Mizrahi, Moti (Ed.) The Kuhnian Image of Science: Time for a Decisive Transformation? Lanham, MD: Rowman & Littlefield, 2018.

Author Information: Markus Arnold, University of Klagenfurt, markus.arnold@aau.at

Arnold, Markus. “Is There Anything Wrong with Thomas Kuhn?.” Social Epistemology Review and Reply Collective 7, no. 5 (2018): 42-47.

The pdf of the article gives specific page references: Shortlink: https://wp.me/p1Bfg0-3Xs

Image by Rob Thomas via Flickr / Creative Commons

 

Twenty-two years after his death, Thomas Kuhn’s work is still able to provoke lively debates, where arguments are exchanged and competing interpretations of his theories are advanced. The Kuhnian Image of Science is a good example, as the book brings together ten scholars in a debate for and against Thomas Kuhn’s legacy. The question, the edited volume raises, is straightforward:

“Does the Kuhnian image of science provide an adequate model of scientific change? If we abandon the Kuhnian picture of revolutionary change and incommensurability […], what consequences would follow from that vis-à-vis our understanding of science as a social, epistemic endeavor?” (7)

In this review I will concentrate on the first two parts of the book, i.e. and in particular on the debate between those who are questioning (Mizrahi, Argamakova, Park, Sankey), and those who are defending Kuhn (Kindi, Patton), since their arguments are closely related. Therefore, I will discuss some of their major arguments in topological order.

Debating Kuhn’s Evidence

The editor Moti Mizrahi opens the debate in his introduction with a confrontational thesis: Kuhn, in his opinion, is responsible for an “infectious disease” (3), for “the pathological state of the field of philosophy of science in general, and general philosophy of science in particular” (3). Kuhn’s vice is his use of case studies (from the history of science) as arguments, although – according to Moti Mizrahi – they are nothing more than “anecdotal evidence” leading to “hasty generalizations” and “fallacious inductive reasoning” (6).

Hearing the trumpets of the troops ready to battle one is eager to learn how to do it right: How the standards of inductive reasoning within philosophy of science are re-erected. Yet, anticipating one of the results of this review, the “inductive reasoning” intended to refute Kuhn’s incommensurability thesis (found in the first part of the book) is actually its weakest part.

However, to understand the intricacy of this difficult task, we have to recognize, that it is not easy to support or falsify inductively a complex theory of science. Broadly speaking, in Kuhn’s account we should empirically observe sciences displaying at least four different manifestations: (1.) “proto-science” in the pre-paradigm phase, when there is no general consensus about theories, methods and standards, (2.) “normal science”, when scientists are most of the time focused on preserving, but also adapting existing paradigms to new problems and new scientific fields, (3.) sciences in a state of crisis, when more and more “anomalies” occur, which defy explanations in conformity with established procedures, and finally (4.) on rare occasions a “revolutionary” state, when different paradigms compete with each other and scientific theories based on one paradigm are to some extent “incommensurable” with those based on another paradigm.

There are good reasons to suppose that Kuhn’s somehow schematic and ideal-typical description of scientific change is too simple compared with the complexities shown by many historical case studies. Nevertheless, the counter-arguments under consideration brought forward against his model seem, paradoxically, to underestimate the complexity of Kuhn’s claims. For example, in Kuhn’s Incommensurability Thesis Mizrahi decides to discuss scientific change only in general.  He claims that Kuhn argues:

“Scientific change (specifically, revolutionary change) is characterized by taxonomic incommensurability.” (33)

The compounded phrase “[s]cientific change (specifically, revolutionary change)” indicates that, in Mizrahi’s interpretation, for Kuhn not all scientific change is per definition revolutionary. But then arguments against Kuhn’s theory should consider at least two kinds of scientific change separately: revolutionary change and those (commensurable) non-revolutionary scientific changes within “normal science.”

Keeping in mind that for Kuhn theory change is possible to a certain degree within normal science (only changing paradigms must be averted)[1], it is not clear, why Kuhn’s “image of science” should be dismissed because “as far as theory change is concerned” taxonomic incommensurability “is the exception rather than the rule” (38).[2]

Or another example, in Can Kuhn’s Taxonomic Incommensurability Be an Image of Science? where Seungbae Park comes to the conclusion that historical evidence shows that “scientific revolution is rare, taxonomic incommensurability is rare, and taxonomic commensurability is common” (61). It is, for similar reasons, unclear why this conclusion should not be commensurable with Kuhn’s description of normal science, since Kuhn claimed that normal science is common and scientific revolutions are rare.

However, this is not Park’s last argument about scientific change: He asks furthermore if we should not distinguish between the distant scientific past, when scientific revolutions were more common, and the recent past, “since most recent past theories have been stable, most present theories will also be stable” (70). Kuhn’s theory of revolutionary paradigm change is, in his opinion, first of all not appropriate for understanding the development of contemporary and future science.

Incommensurable Paradigms of Language?

After a discussion of the critical reception of Thomas Kuhn’s and Paul Feyerabend’s work and the objections raised against their claim that scientific theories or paradigms are incommensurable, Howard Sankey admits in The Demise of the Incommensurability Thesis that:

“the idea that there is conceptual change in science now seems commonplace. But the much-feared consequences, such as incomparability, communication breakdown, and irrationality now all seem to have been greatly overblown.” (88)

Prima facie it seems like a self-critical admission of an inappropriate former reception of Kuhn’s theory of incommensurability, especially by those philosophers of science who tried to fight “irrationality” with the means of referential semantics. However, Sankey seems to think that the dissolution of the exaggerated accusations of Kuhn’s critics somehow makes now Kuhn’s theory of incommensurability obsolete. Hence, Sankey can summarize:

“with the demise of the incommensurability thesis, the debate about scientific realism is free to proceed in a manner that is unencumbered by the semantic concerns about wholesale referential discontinuity that were prompted by the incommensurability thesis.” (88)

For Sankey, Kuhn’s concept of incommensurability is dead (87). He seems to blame Kuhn for the misguided interpretations of his opponents. It comes down to the argument: if it’s not possible to criticize Kuhn’s concept of incommensurability as “irrational” anymore, then Kuhn’s concept cannot claim any relevance for future discussions.

However, more importantly: These arguments against Kuhn are based on referential semantics, i.e. semantic concerns about referential continuity. Hence, what their objections against Kuhn’s incommensurability theory inadvertently show is, paradoxically, the incommensurability of competing paradigms of language. This becomes apparent, for example, when Mizrahi criticizes Kuhn’s sometimes-vague formulations, especially in his early Structure. Mizrahi refers to statements where Kuhn argues with caution:

“The normal-scientific tradition that emerges from a scientific revolution is not only incompatible but often [sic] actually incommensurable with that which has gone before.” (Kuhn 1996, 103)

Formulations such as this prompt Mizrahi to ask: If taxonomic incommensurability (TI):

“is not a general thesis about the nature of scientific change, then what is its explanatory value? How does (TI) help us in terms of understanding the nature of scientific change? On most accounts of explanation, an explanans must have some degree of generality […] But if (TI) has no degree of generality, then it is difficult to see what the explanatory value of (TI) is.” (37)

Kuhn could have responded that his arguments in Structure are explicitly based on Wittgenstein’s theory of “language games” with its central concept of “family resemblance”, which by definition does not allow the assumption that there are unambiguous conceptual boundaries and a distinguishing characteristic, which all or even most of the phenomena aligned by a concept have in common.[3]

Indeed, understanding Wittgenstein’s concept of “family resemblance” is central to understand Kuhn’s theory of “paradigms”, “paradigm shifts”, and the meaning of “incommensurability”.[4] Yet, it is possible to come to similar conclusions without referring to the late Wittgenstein: For example, Alexandra Argamakova despite of her negative evaluation of many of Kuhn’s arguments, unlike Mizrahi, is closer on this issue to Kuhn where she claims in Modeling Scientific Development: “distinct breakthroughs in science can be marked as revolutions, but no universal system of criteria for such appraisal can be formulated in a normative philosophical manner” (54).

Defending Kuhn’s Epistemology

In two of the book’s most interesting discussions of Kuhn’s epistemology, Vasso Kandi’s The Kuhnian Straw Man and Lydia Patton’s Kuhn, Pedagogy, and Practice, the allegation that Kuhn developed his theory on the basis of selected historical cases is refuted. Furthermore, Kindi, defending the innovative character of Kuhn’s work asks “for a more faithful reading”:

“Kuhn’s new image of science, which is actually a mosaic of different traditions, was not put together by generalizing from instances; it emerged once attention was drawn to what makes scientific practice possible, namely paradigms and what follows from them (normal science, anomalies, revolutions). In accordance with Kuhn’s own understanding of scientific revolutions, his revolution in the perception of science did not have to summon new facts or make new discoveries; it only needed a new perspective.” (104)

While Lydia Patton forcefully argues that:

“Kuhn’s original work did not restrict ‘paradigm’ to ‘theoretical framework’, nor did he restrict the perspective of scientific practice to the content of propositions with a truth-value. And it is mainly because Kuhn’s arguments in Structure are outside the semantic view, and focus instead on the practice of science, that they are interesting and fresh.” (124)

Both, Patton and Kindi, offer a close reading of Kuhn’s work, trying to give new perspectives on some of the more contested concepts in Kuhn’s epistemology.

The Social in Social Epistemology

One explicit aim of this edited volume is, as the editor asserts, to outline what consequences would follow from this debate for “our understanding of science as a social, epistemic endeavor” (7). But for this reviewer it is not obvious how the strong emphasis on discounting Kuhn’s incommensurability thesis in the first part of the book should lead to a better understanding of science as a social practice.

Kuhn’s theory of incommensurability of competing paradigms is precisely the point within his epistemology where value judgments and social decisions come into play. While traditionally those who defended the “progress of science” (cf. Sankey: 87) against what they saw as Kuhn’s “anti-realist” position were often those who wanted to defend the objectivity of science by excluding “external” influences, like the “social” and the political, from the scientific core.[5]

It is therefore important when talking about incommensurability of paradigms, and the possibility of a “communication breakdown”, to distinguish between two distinct meanings: (a) the impossibility to communicate at all because people do not understand each other’s language or paradigms and (b) the decision after a long and futile debate to end any further communication as a waste of time since no agreement can be reached. It is this second meaning, describing a social phenomenon, which is very common in science. Sankey argues against the first meaning when he declares:

“Given that scientists are able to understand what is said by theories whose terms are untranslatable into their own, no insuperable obstacle stands in the way of full communication between the ‘proponents of competing paradigms.’” (87)

While Sankey “wonders what all the fuss was about” (87), he has only shown (in accordance with Kuhn: cf. Kuhn 2000) that in theory full communication may be possible, but not that communication breakdowns are not common between scientists working with different paradigms. While on a theoretical level these workday problems to communicate may seem, for some philosophers of science, trivial. However, on the social level for working scientists, such communication breakdowns are often not only the reason for fraught relations between colleagues, but also for disciplinary segmentation and sometimes for re-drawing boundaries of scientific disciplines.

Perhaps it is no coincidence that in this volume those who discuss social as well as epistemological practices of scientists are not those who criticize incommensurability from a semantic point of view. Social and epistemological practices are considered in one way or the other by those defending Kuhn, like Kindi and Patton, and those whose main concern is to revise certain aspects of Kuhn’s image of science, like James A. Marcum, Barbara Gabriella Renzi & Giulio Napolitano, and David P. Rowbottom.

However, as I confined this review to the discussion of the first six articles I can only point out that the four remaining articles go beyond the topics discussed thus far and would deserve not only attentive readers but also a thorough discussion. They analyze, for example, scientific revolutions in mathematics (Andrew Aberdein), the role of evolutionary metaphors (Gabriella Renzi/Napolitano, Marcum) and of methodological contextualism in the philosophy of science (Rowbottom). Hence, although this edited volume has some weaknesses, there are several contributions, which open new avenues of thought about Kuhn, and are worth reading for those interested in Kuhn and in philosophy of science.

Contact details: markus.arnold@aau.at

References

Kuhn, Thomas S. The Structure of Scientific Revolutions. Chicago: University of Chicago Press, 1996.

Kuhn, Thomas S. „Commensurability, Comparability, Communicability,“ In Thomas S. Kuhn, Thomas S. The Road Since Structure. Philosophical Essays, 1970-1993, 33-57. Chicago: University of Chicago Press, 2000.

Mizrahi, Moti (Ed.) The Kuhnian Image of Science. Time for a Decisive Transformation? Lanham, MD: Rowman & Littlefield, 2018.

Wittgenstein, Ludwig. Philosophische Untersuchungen / Philosophical Investigations. Transl. by G. E. M. Anscombe, P. M. S. Hacker and Joachim Schulte. Oxford: Wiley-Blackwell, 2009.

[1] Kuhn discusses this type of theory change, for example, as divergent „articulation(s) of the paradigm“ (Kuhn 1996, 83; cf. Kuhn 1996, 23, 29-34, 122).

[2] Always on condition that, like Moti Mizrahi in this argument, we accept the concept of „incommensurability“ as defined by referential semantics. On some problems with „referential continuity“ as main argument against incommensurability see further below.

[3] “Instead of pointing out something common to all […], I’m saying that these phenomena have no one thing in common in virtue of which we use the same word for all – but there are many different kinds of affinity between them“ (Wittgenstein 2009, § 65) “I can think of no better expression to characterize these similarities than “family resemblances”; for the various resemblances between members of a family – build, features, colour of eyes, gait, temperament, and so on and so forth – overlap and criss-cross in the same way.” (§ 67)

[4] Cf. Kuhn 1996, Ch. 5. Later, Kuhn argued explicitly against referential semantics but then on the basis of a hermeneutic (holistic) theory of language (Kuhn 2000; but cf. Kuhn 1996, 128f.).

[5] This, despite the fact that Kuhn himself tried to restrict the relevant „social“ factors in his epistemology to social dynamics within scientific communities.

Author Information: Stephen Turner, University of South Florida, turner@usf.edu

Turner, Stephen. “Fuller’s roter Faden.” Social Epistemology Review and Reply Collective 7, no. 5 (2018): 25-29.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3WX

Art by William Blake, depicting the creation of reality.
Image via AJC1 via Flickr / Creative Commons

The Germans have a notion of “research intention,” by which they mean the underlying aim of an author’s work as revealed over its whole trajectory. Francis Remedios and Val Dusek have provided, if not an account itself, the material for an account of Steve Fuller’s research intention, or as they put it the “thread” that runs through his work.

These “intentions” are not something that is apparent to the authors themselves, which is part of the point: at the start of their intellectual journey they are working out a path which leads they know not where, but which can be seen as a path with an identifiable beginning and end retrospectively. We are now at a point where we can say something about this path in the case of Fuller. We can also see the ways in which various Leitmotifs, corollaries, and persistent themes fit with the basic research intention, and see why Fuller pursued different topics at different times.

A Continuity of Many Changes

The ur-source for Fuller’s thought is his first book, Social Epistemology. On the surface, this book seems alien to the later work, so much so that one can think of Fuller as having a turn. But seen in terms of an underlying research intention, and indeed in Fuller’s own self-explications included in this text, this is not the case: the later work is a natural development, almost an entailment, of the earlier work, properly understood.

The core of the earlier work was the idea of constructing a genuine epistemology, in the sense of a kind of normative account of scientific knowledge, out of “social” considerations and especially social constructivism, which at the time was considered to be either descriptive or anti-epistemological, or both. For Fuller, this goal meant that the normative content would at least include, or be dominated by, the “social” part of epistemology, considerations of the norms of a community, norms which could be changed, which is to say made into a matter of “policy.”

This leap to community policies leads directly to a set of considerations that are corollaries to Fuller’s long-term project. We need an account of what the “policy” options are, and a way to choose between them. Fuller was trained at a time when there was a lingering controversy over this topic: the conflict between Kuhn and the Popperians. Kuhn represented a kind of consensus driven authoritarianism. For him it was right and necessary for science to be organized around ungroundable premises that enabled science to be turned into puzzle-solving, rather than insoluble disputes over fundamentals. These occurred, and produced new ungroundable consensual premises, at the rare moments of scientific revolutions.

Progress was possible through these revolutions, but our normal notions of progress were suspended during the revolutions and applied only to the normal puzzle-solving phase of science. Popperianism, on the contrary, ascribed progress to a process of conjecture and refutation in which ever broader theories developed to account for the failures of previous conjectures, in an unending process.

Kuhnianism, in the lens of Fuller’s project in Social Epistemology, was itself a kind of normative epistemology, which said “don’t dispute fundamentals until the sad day comes when one must.” Fuller’s instincts were always with Popper on this point: authoritarian consensus has no place in science for either of them. But Fuller provided a tertium quid, which had the effect of upending the whole conflict. He took over the idea of the social construction of reality and gave it a normative and collective or policy interpretation. We make knowledge. There is no knowledge that we do not create.

The creation is a “social” activity, as the social constructivists claimed. But this social itself needed to be governed by a sense of responsibility for these acts of creation, and because they were social, this meant by a “policy.” What this policy should be was not clear: no one had connected the notion of construction to the notion of responsibility in this way. But it was a clear implication of the idea of knowledge as a product of making. Making implies a responsibility for the consequences of making.

Dangers of Acknowledging Our Making

This was a step that few people were willing to take. Traditional epistemology was passive. Theory choice was choice between the theories that were presented to the passive chooser. The choices could be made on purely epistemic grounds. There was no consideration of responsibility, because the choices were an end point, a matter of scientific aesthetics, with no further consequences. Fuller, as Remedios and Dusek point out, rejects this passivity, a rejection that grows directly out of his appropriation of constructivism.

From a “making” or active epistemic perspective, Kuhnianism is an abdication of responsibility, and a policy of passivity. But Fuller also sees that overcoming the passivity Kuhn describes as the normal state of science, requires an alternative policy, which enables the knowledge that is in fact “made” but which is presented as given, to be challenged. This is a condition of acknowledging responsibility for what is made.

There is, however, an oddity in talking about responsibility in relation to collective knowledge producing, which arises because we don’t know in advance where the project of knowledge production will lead. I think of this on analogy to the debate between Malthus and Marx. If one accepts the static assumptions of Malthus, his predictions are valid: Marx made the productivist argument that with every newborn mouth came two hands. He would have been better to argue that with every mouth came a knowledge making brain, because improvements in food production technology enabled the support of much larger populations, more technology, and so forth—something Malthus did not consider and indeed could not have. That knowledge was in the future.

Fuller’s alternative grasps this point: utilitarian considerations from present static assumptions can’t provide a basis for thinking about responsibility or policy. We need to let knowledge production proceed regardless of what we think are the consequences, which is necessarily thinking based on static assumptions about knowledge itself. Put differently, we need to value knowledge in itself, because our future is itself made through the making of knowledge.

“Making” or “constructing” is more than a cute metaphor. Fuller shows that there is a tradition in science itself of thinking about design, both in the sense of making new things as a form of discovery, and in the sense of reverse engineering that which exists in order to see how it works. This leads him to the controversial waters of intelligent design, in which the world itself is understood as, at least potentially, the product of design. It also takes us to some metaphysics about humans, human agency, and the social character of human agency.

One can separate some of these considerations from Fuller’s larger project, but they are natural concomitants, and they resolve some basic issues with the original project. The project of constructivism requires a philosophical anthropology. Fuller provides this with an account of the special character of human agency: as knowledge maker humans are God-like or participating in the mind of God. If there is a God, a super-agent, it will also be a maker and knowledge maker, not in the passive but in the active sense. In participating in the mind of God, we participate in this making.

“Shall We Not Ourselves Have to Become Gods?”

This picture has further implications: if we are already God-like in this respect, we can remake ourselves in God-like ways. To renounce these powers is as much of a choice as using them. But it is difficult for the renouncers to draw a line on what to renounce. Just transhumanism? Or race-related research? Or what else? Fuller rejects renunciation of the pursuit of knowledge and the pursuit of making the world. The issue is the same as the issue between Marx and Malthus. The renouncers base their renunciation on static models. They estimate risks on the basis of what is and what is known now. But these are both things that we can change. This is why Fuller proposes a “pro-actionary” rather than a precautionary stance and supports underwriting risk-taking in the pursuit of scientific advance.

There is, however, a problem with the “social” and policy aspect of scientific advance. On the one hand, science benefits humankind. On the other, it is an elite, even a form of Gnosticism. Fuller’s democratic impulse resists this. But his desire for the full use of human power implies a special role for scientists in remaking humanity and making the decisions that go into this project. This takes us right back to the original impulse for social epistemology: the creation of policy for the creation of knowledge.

This project is inevitably confronted with the Malthus problem: we have to make decisions about the future now, on the basis of static assumptions we have no real alternative to. At best we can hint at future possibilities which will be revealed by future science, and hope that they will work out. As Remedios and Dusek note, Fuller is consistently on the side of expanding human knowledge and power, for risk-taking, and is optimistic about the world that would be created through these powers. He is also highly sensitive to the problem of static assumptions: our utilities will not be the utilities of the creatures of the future we create through science.

What Fuller has done is to create a full-fledged alternative to the conventional wisdom about the science society relation and the present way of handling risk. The standard view is represented by Philip Kitcher: it wishes to guide knowledge in ways that reflect the values we should have, which includes the suppression of certain kinds of knowledge by scientists acting paternalistically on behalf of society.

This is a rigidly Malthusian way of thinking: the values (in this case a particular kind of egalitarianism that doesn’t include epistemic equality with scientists) are fixed, the scientists ideas of the negative consequences of something like research on “racial” differences are taken to be valid, and policy should be made in accordance with the same suppression of knowledge. Risk aversion, especially in response to certain values, becomes the guiding “policy” of science.

Fuller’s alternative preserves some basic intuitions: that science advances by risk taking, and by sometimes failing, in the manner of Popper’s conjectures and refutations. This requires the management of science, but management that ensures openness in science, supports innovation, and now and then supports concerted efforts to challenge consensuses. It also requires us to bracket our static assumptions about values, limits, risks, and so forth, not so much to ignore these things but to relativize them to the present, so that we can leave open the future. The conventional view trades heavily on the problem of values, and the potential conflicts between epistemic values and other kinds of values. Fuller sees this as a problem of thinking in terms of the present: in the long run these conflicts vanish.

This end point explains some of the apparent oddities of Fuller’s enthusiasms and dislikes. He prefers the Logical Positivists to the model-oriented philosophy of science of the present: laws are genuinely universal; models are built by assuming present knowledge and share the problems with Malthus. He is skeptical about science done to support policy, for the same reason. And he is skeptical about ecologism as well, which is deeply committed to acting on static assumptions.

The Rewards of the Test

Fuller’s work stands the test of reflexivity: he is as committed to challenging consensuses and taking risks as he exhorts others to be. And for the most part, it works: it is an old Popperian point that only through comparison with strong alternatives that a theory can be tested; otherwise it will simply pile up inductive support, blind to what it is failing to account for. But as Fuller would note, there is another issue of reflexivity here, and it comes at the level of the organization of knowledge. To have conjectures and refutations one must have partners who respond. In the consensus driven world of professional philosophy today, this does not happen. And that is a tragedy. It also makes Fuller’s point: that the community of inquirers needs to be managed.

It is also a tragedy that there are not more Fullers. Constructing a comprehensive response to major issues and carrying it through many topics and many related issues, as people like John Dewey once did, is an arduous task, but a rewarding one. It is a mark of how much the “professionalization” of philosophy has done to alter the way philosophers think and write. This is a topic that is too large for a book review, but it is one that deserves serious reflection. Fuller raises the question by looking at science as a public good and asking how a university should be organized to maximize its value. Perhaps this makes sense for science, given that science is a money loser for universities, but at the same time its main claim on the public purse. For philosophy, we need to ask different questions. Perhaps the much talked about crisis of the humanities will bring about such a conversation. If it does, it is thinking like Fuller’s that will spark the discussion.

Contact details: turner@usf.edu

References

Remedios, Francis X., and Val Dusek. Knowing Humanity in the Social World. The Path of Steve Fuller’s Social Epistemology. New York: Palgrave MacMillan, 2018.

Author Information: Sheldon Richmond, Independent Researcher

Richmond, Sheldon. “Philosophy Out in the Cold.” Social Epistemology Review and Reply Collective 7, no. 4 (2018): 33-40.

The pdf of the article gives specific page references: Shortlink: https://wp.me/p1Bfg0-3Wi

Images of the benevolence of the United States Armed Forces.
Image by James Vaughn, via Flickr / Creative Commons

 

John McCumber’s book, The Philosophy Scare: The Politics of Reason in the Early Cold War, exists on four levels at the least. First: on the literal level, the book is about the special case of the UCLA philosophy department. How the philosophers, university administrators, and the State of California, hide away from and at the best, avoid, the McCarthy witch-hunt for communists. Also, on the literal level, the book is about how subliminally, the philosophy department unconsciously absorbs and thereby becomes subject to the ideology of the Red Scare.

(In place of the generic term, “ideology”, McCumber prefers the term paradigm borrowed from T.S. Kuhn, a term that is well known, widely used or misused term of choice when talking about internal pressures on general viewpoints. Also, in place of “ideology”, McCumber prefers the term dispositive, borrowed from Michel Foucault, a term lesser known that includes political-social external intellectual shapers).

Second: on the broader and extended literal level, the UCLA philosophy department case during the 50s and into the 60s is manifested by many if not all philosophy departments in the USA. Third: on a deeper level, just below the surface text of the book, there is an insinuation that Philosophy in America has barely moved away from the ideological iceberg of Cold War American anti-communism.

Fourth: on the deepest level, not at all articulated in the text, but presumed in the book is a commonly held axiom of intellectual life in and out of Academia. The axiom is that America hegemonically or mono-manically wields an ideology that molds all thought. The American ideology is enforced by the power conditions of the American Hegemony or American Empire. Moreover, we won’t fully realize the American ideology until the Empire tumbles—perhaps if the War against the Evil Empire (whichever one it happens to be at the moment) is lost.

(Though the End of X theme is not played in this book, the reality presumed in the book is that America is going strong continually recovering from fumbles, but still scoring touch-down after touch-down in spite of whatever fool happens to be the quarterback.)

An Argument of Classical Rational Choice

The core thesis of the text is concisely stated about mid-way through a very deliberately planned and structured book with three parts, two chapters to each part, balanced by an Introduction and an Epilogue. Not counting the customary Prologue, the book has 8 chapters. This is no accident—the text has the shape of a sine curve. The peak of the sine curve delineates the Rules and Premises of the American Intellect. The curve downward points to an alternative Philosophy existing always on the fringes of American Philosophy (and American Philosophy Departments) imported from Europe, Post-Modernism (often disguised in the updated version of old-fashioned American Pragmatism—found in the intellectually trend-setting works of Rorty. According to McCumber:

When Cold War philosophy became the operating philosophy of the United States, this [operating philosophy] was elevated into a new social gospel. Institutions that help individuals become powerful and wealthy (law schools, business schools) or stay that way (medical schools, hospitals) flourished; other public infra-structure, along with the environment was left to rot. Many of the problems faced by the United States in the early twenty-first century are testimony to the power of Cold War philosophy’s theory of mind. (p.112).

The theory of mind that McCumber refers to is in the philosophical extrapolations that McCumber develops (in the two chapters of Part 2, pp. 71 ff.) largely from the dilemmas of rational choice (in democratic-capitalist society). McCumber’s text concentrates on Kenneth Arrow’s dilemmas of rational choice that micro-economics or welfare economics employs to resolve the problems of wealth redistribution (in democratic-capitalist society).

However, McCumber’s text also fingers the von Neumann/Morgenstern mathematical game-theoretic approach to the dilemmas of rational choice (in democratic-capitalist society). The contextual qualifier of the phrase “in democratic-capitalist society” carries in it the unstated presumption that rational choice theory (RCT for short in the text)—explicitly extrapolated from Arrow’s micro-economics and mathematical game-theory—is the only and best intellectual weapon of defense against the intellectual fifth-column of anti-American communism. The best intellectual weapon is the ideology of a great and free American money-making machine composed of individuals buying (especially on credit) and consuming great quantities of goods—at the cheapest cost and produced at the cheapest cost with the cheapest resources by the cheapest and most efficient means of production.

All this making, selling-buying, consuming ever spinning of the economic-technological-industrial-military wheel turns regardless of down-stream costs to future generations, not only economically with the increasing American debt at all levels, but also environmentally with the increasing down-stream damage to all life and the planet—not merely unintended, but with imposed and willful disregard.

Into this pot of rational choice theory, was blended the philosophy found in Philosophy at UCLA, in specific in the work of the German-Jewish Berlin expat, Hans Reichenbach, especially in Reichenbach’s introductory philosophy textbook, The Rise of Scientific Philosophy, 1951. According to McCumber: “In the United States it [Reichenbach’s book] played an enormous role in establishing the various permutations of what would later be called analytical philosophy as the dominant dispositive in most American philosophy departments.” (pp. 56-7)

But what is its—the meld of analytic/scientific philosophy and rational choice theory– “cash-value” (a popular phrase in American vernacular, including the sophisticated academic jargon of both the pragmatist and analytic schools of philosophy)? What is the ultimate content of this meld of “scientific philosophy” or later known as “analytic philosophy” and rational choice theory? How does the meld function as an intellectual weapon of defense against communist ideology (and even today, against all anti-Americanism)? How does the meld act to discretely (or, in the punchy phrasing of McCumber, “stealthily”, form formal/academic philosophy and keep alternative philosophical schools, such as traditional pragmatism, continental philosophy, academic Marxism—as opposed to “vulgar” Marxism–and though not-mentioned in this text, Adorno/Marcuse critical philosophy at the fringes)?

Stealth Influence

Most importantly, in terms of what is taught and published—in the main–how does the meld (of scientific/analytic philosophy and rational choice theory) become adopted by the power structures of academia and even those power-structures in the world outside (as an intellectual superstructure or rationalization) that govern and inhabit politico-economic activity? The content of the meld that has become America’s intellectual defense weapon of choice is concisely articulated again at the very peak of the book’s textual sine curve in the concluding section of Chapter four, in terms of six premises (cited indirectly as under “some famous attacks” by philosophers at the edge of the cold war or post-cold war.)(cf. p. 112).

Summarizing the summary of the 6 premises in terms of 6 phrases, the six dogmas of analytic philosophy are as follows: 1. Unified Reason. 2. Knowledge=Prediction. 3. Prediction=Justified Knowledge vs Discovery/Intuition/Guessing. 4. Reason=Analytic Truth=Formal?Mathematical Logic. 5. Externalities are irrelevant (i.e. History, Culture). 6. Emotion (in argument or intellectual passion) is an Externality.

All the above 6 propositions/dogmas are part of the “stealthiness” of modern American Analytic Philosophy (not just the UCLA of the Cold War) but even today, even though those “dogmas” or in more discrete terminology, “axioms”, of American Cold War Philosophy are under attack by the intellectual descendants of the founders of American Cold War Philosophy (not just at UCLA, but almost everywhere—even outside America). Though today, the intellectual descendants of cold warrior philosophers hack away at the intellectual dogmas of their teachers (or their teachers’s teachers), the practices of stealthiness unconsciously remain in the new analytically dominated platforms for the production and distribution of the intellectual goods of philosophy.

We find out how, in the Epilogue (in the download flow of the sine curve of the text):

With the main enemies [who were the prejudiced and brainwashed general public, and the McCarthyite anti-Red vigilantes in high places] now internal to academia, the elaborate tactics of stealth directed against outsiders . . . hiring one’s own graduate students, publishing in obscure places if at all, and pretending to make hires while actually delaying them—were no longer necessary. Simply ignoring professors outside one’s own field and being ignored by them in return provided sufficient cover. (p.159)

I think it would be only fair at this point of the text, before going onto McCumber’s own intellectual weapon of defense against the now ancient dogmas of analytic philosophy, enunciated in the Epilogue, to allow Reichenbachians a chance to reply (after a few remarks about the context of the reply and a few other replies). In general, to be intellectually fair and honest, the wide condemnation of Philosophy in the America of the 50s also should have its day in the court of Reason in all its varieties. Because there are so many varieties of Reason, it would only be fair to pick up on four courts of hearing—I am not merely referring to the Reason of the pluralism in intellectual life today, but of the overlooked pluralism of intellectual life of the 50s in America.

Undercurrents Against Positivism

I am actually going to pick up on the four schools of anti-logical positivism (or at least those who were friendly and unfriendly critics, and those who just went their own way not bothering to criticize logical positivism but to pursue their own lights regardless of the criticisms of logical positivists.) Furthermore, I will only mention people who were mentioned in this book as part of the mainstream intellectual adherents of the ”operating philosophy” of America.

First, let’s give Wittgenstein a hearing, not the “Whereof you cannot speak, be silent” Wittgenstein, but the so-called later Wittgenstein of his posthumously published works (in the 50s and until very recently). I pick Wittgenstein first because his later philosophy of the 50s is antithetical to the mainstream philosophy of the 50s that became the “operating philosophy” of America. Wittgenstein (and various philosophers who influenced American philosophy but practiced ordinary language philosophy mainly in England, not mentioned in this book) clearly recognized and brought to the light of day the importance of how culture influences thought via language games. The Wittgensteinian dictum of “no private language” and the Wittgensteinian thought experiment of not understanding a lion that could speak, is intended to contextualize the intellectual role of the individual and the thought and language of the individual by focusing on the public nature of language and mind.

McCumber could reply, Wittgensteinians except for Rorty, largely mumbled among themselves, and wrote obscure short articles and books (that were really long articles) and so were stealthily pursuing their own little puzzles hardly known outside their own specializations within philosophy let alone outside philosophy. This goes to prove McCumber’s point: the public quiescence of philosophy allowed the Cold War Ideology to go unchallenged, and Cold War practices of self-censoring what is said in public and who are hired in academia, to go on behind doors closed to outside scrutiny—not only to the scrutiny of the Red Scare mongers, but as well to the scrutiny of independent thinkers wherever they happened to land a job whether in or out of academia.

Second, now let’s give Reichenbach, as a representative and founder of America’s “operating philosophy” in the Cold War, a chance to reply: Naturalism applied to philosophy is no mere extension of science but an answer to the traditional big questions of philosophy—an answer that historically stems from the Pre-Socratics—that were the progenitors of modern rational thought including the sciences of today: cosmology, physics, mathematics, evolutionary biology, psychology, sociology, and economics. Moreover, , though there may be no “logic of discovery”, there is still a social aspect for science—and in the social aspect, there are conventions that evolve with science—and similarly all intellectual disciplines. In other words, there is a social aspect to the methodology of science, in particular to the methodologies for the use of experiment and verification/refutation in science. Whether or not there are higher-level social conventions that govern all intellectual disciplines is open to discussion.

McCumber can reply that he critically discussed Reichenbach’s theory of the social aspect of sciences in the book:

But Reichenbach has a limited view of what this kind of scientific cooperation [society/Republic] amounts to…Scientific collaboration is thus a sort of quantitative amplification, in which many different individuals can pool their intellectual strength because they are all, in principle, doing exactly the same thing. . . . The scientific community, applying reason to observations, is thus not a set of clashing perspectives . . . but a sort of “superperson.” (p.100)

Society reduces to the sum of abstract logical individuals. The product of social interaction in a community of intellectuals equals the thought of the logically constructed idealized individual. Everyone, according to Reichenbach, in an intellectual community, must come up with the same answers as long as the algorithms, of reason are applied to the same data, correctly or uniformly.

Third, though not attacked in the book, Bertrand Russell, deserves a voice. Russell is mentioned in the book as an early pre-Cold War victim of anti-atheist religious fundamentalist pressure groups who lobbied for the firing of Russell from UCLA and from his next stop, CCNY. Russell’s case is a proto-version of the later American public witch-hunting of leftist intellectuals. How Russell could speak up goes as follows: Russell’s pioneering efforts provided the foundations in logico-mathematical reasoning for the development of analytic philosophy.

He was much admired by the logical positivists for starting an intellectual revolution in philosophy that turned philosophy from woolly thinking enmeshed in religion, mysticism, idealism, and a discipline without discipline, into a critical enquiry using the latest intellectual techniques available to scientists and mathematicians. Moreover, Russell used these tools of critical enquiry not only to tackle the fundamental philosophical problems where he also constantly revised his theories, but also to tackle the social, political, and ethical issues of the day for a wide audience. Hence, for Russell (unlike most of his followers including Wittgenstein, A.J. Ayer, and Quine) analytic philosophy was used to blast the idols of the day—especially the increasing production, testing, development and storing of nuclear weapons as a “deterrent”.

McCumber’s reply is easy: the exception proves the rule. In most cases, analytic philosophy turned its critical enquiry upon itself and even a-historically treated classical philosophers as either proto-analytic philosophers (when those older views or arguments were endorsed by the analytic school of philosophy) or as muddled, without looking at historical context. The inward approach of most analytic philosophers reveals that their use of analytic philosophy as a “stealth” weapon—to keep undetected from the outside world in the Cold War—is highlighted by contrast with how Russell was brave enough to expose all his intellectual armoury to attack from the outer world. It is not that analytic philosophy is inherently an insider-game, it is that as an insider-game, analytic philosophy, on the one side, avoided trouble from Cold War evangelists; and analytic philosophy as an insider-game, on the other side, played into the hands of the Red Scare avant-garde by not avoiding confrontation with those keen to find a “commie in every corner.”

Fourth, Hayek and Popper are treated as Cold Warriors as if it were both common knowledge and unquestionable truth—and so deserve a chance to set the record straight according to their own lights. Friedrich Hayek and Karl Popper, though mentioned in the book as anti-communist, which they were, are not mentioned as anti-scientism or anti-unified science.

Both were against the doctrine of applying a singular, supposed universal scientific method to all disciplines including history and economics. Both thought that history had no laws: not material, not natural, not economic, not social. Historical events are contingent and unique; therefore, historical events are not repeatable and so have no “laws” or even “regularities” unlike the natural sciences. Economics assumes a social level not reducible to psychology, hence, the only law of economics is the hypothetical zero-law of rational behaviour in idealized situations, that is used to expose what is unexpected, and therefore treat the unexpected as a problem to be explained, though never completely.

McCumber’s reply is apparently an easy one too: Hayek and Popper adopted “methodological individualism” as an explanation of the social. Hence, the social becomes the abstract individual with identical goals and beliefs. Moreover, Hayek and Popper, though against scientism and the unity of scientific method—across disciplines—were avowed followers of the Enlightenment. Popper advocated “critical rationalism”, a fringe school of philosophy that aims to apply rationality universally in all disciplines. Moreover, Popper, especially does not admit that rationality is culturally, temporally, and disciplinarily relative.

(Popper argues against what he calls the “myth of the framework”, contrary to the cultural relativism held by Wittgenstein, Kuhn, Foucault, Post-Modernism, and apparently McCumber as well: culture permeates but does not totalize all thought, perception, and action; otherwise, liminal, transitional, and fringe thinkers could not occur, and their thoughts and activities would be inconceivable. However, this aside about Popper, it is important to note, does not undercut McCumber’s point that intellectual deviance does actually occur. Moreover, according to McCumber, intellectual deviance is and was insufficient to disturb other than as a nuisance effect, the hegemony of America’s “operating philosophy”—analytic philosophy and its subservience to the McCarthy Effect.)

Conclusion

How then, might the reader of this review ask, does the text under review, answer the question: how can we thoroughly expose and thoroughly debunk whatever elements remain in philosophy from the era of the Cold War? The part of the intellectual iceberg of the American ideology (paradigm/dispositive) of the Cold War that remains is the part out of view—the most hazardous part to enquirers at sail in the ocean of thought (in every field of enquiry, and even in our everyday thinking about everyday matters).

John McCumber outlines in a subsection of the Epilogue, “Reason Beyond Rational Choice”, (pp. 164 ff.) a 5 step program, for overcoming the meld of scientific philosophy and Rational Choice Theory that evolved into modern analytic philosophy. Here is a concise version of a manifesto for a program that appears to comprise both a revision and fusion of good old-fashioned American pragmatism (in the footsteps of Rorty) and Americanized post-modernism.

First, engage in dialectics—people passionately arguing together from different cultural/intellectual outlooks. Second, the aim is not to win, but to gain mutual understanding, and even help each other better articulate their own viewpoints. Third, recognize the historical background for each other’s different outlooks—contextualize outlooks rather than universalize outlooks. Fourth, use no rules or for whatever minimal rules are used, treat them as guidelines to be modified and replaced as the situation demands, and as the dialectics evolve. Fifth, attempt to let a harmonization of outlooks develop without overwhelming or drowning out the different voices.

There are three questions a reader of the book might pose to the author—that are called forth by the very text of the book and inherent in the deepest level of the book. I will state the three questions below that arise from the deep level tacit premise of the book. This tacit premise goes roughly in this way: The individuals in a professional field of an academic institution where independent thinkers are protected by the professional ethics of academic freedom as well as the laws of most democratic countries that guarantee freedom of speech and thought, can be “subjectivized” (in the terminology of McCumber adapted from post-modernist thinkers). “Subjectivization” is the unconscious domination of academic thought that creates a subliminal conformism to a mainstream of one voice in philosophy and becomes absorbed into a monolithic American ideology.

I conclude with the three questions that pop-out of the logic of a situation where an academic mainstream arises and catches those in it unawares; and, where in practice, regardless of theory and regardless of the advocacy of pluralism, members of the non-analytic schools of thought until today are either unemployed, underemployed or marginalized both in academia and in business.

1) How has the God of the Cold War and the iceberg of the American Cold War ideology though exposed, survived the voluminous talks and texts about pluralism, multiculturalism, multi-genderism, diversity…? 2) Or, if the Cold War God is dead, what is the subliminal ideology/paradigm/dispositive that has replaced the Cold War ideology and has in turn captured American life where an evolved analytic, but still analytic roaring mainstream drowns out alternative voices? 3) Is the whole neo-Kuhnian and neo-Foucaultian trend-setting and widely used but vague and metaphorical terminology of paradigm/dispositive, misleading; and so, are there other externalities at work, perhaps those in front of our noses—such as the current economic-techno-social structures that provide a niche for the professionalization of elites that allows those elites to separate themselves from the everyday world; and, create new places of power and control for themselves?

References

McCumber, John. The Philosophy Scare: The Politics of Reason in the Early Cold War. Chicago: University of Chicago Press, 2016.

Author Information: Alfred Moore, University of York, UK, alfred.moore@york.ac.uk

Moore, Alfred. “Transparency and the Dynamics of Trust and Distrust.” Social Epistemology Review and Reply Collective 7, no. 4 (2018), 26-32.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3W8

Please refer to:

A climate monitoring camp at Blackheath in London, UK, on the evening of 28 August 2009.
Image by fotdmike via Flickr / Creative Commons

 

In 1961 the Journal of the American Medical Association published a survey suggesting that 90% of doctors who diagnosed cancer in their patients would choose not to tell them (Oken 1961). The doctors in the study gave a variety of reasons, including (unsubstantiated) fears that patients might commit suicide, and feelings of futility about the prospects of treatment. Among other things, this case stands as a reminder that, while it is a commonplace that lay people often don’t trust experts, at least as important is that experts often don’t trust lay people.

Paternalist Distrust

I was put in mind of this stunning example of communicative paternalism while reading Stephen John’s recent paper, “Epistemic trust and the ethics of science communication: against transparency, openness, sincerity and honesty.” John makes a case against a presumption of openness in science communication that – although his argument is more subtle – reads at times like a rational reconstruction of a doctor-patient relationship from the 1950s. What is disquieting is that he makes a case that is, at first glance, quite persuasive.

When lay people choose to trust what experts tell them, John argues, they are (or their behaviour can usefully be modelled as though they are) making two implicit judgments. The first, and least controversial, is that ‘if some claim meets scientific epistemic standards for proper acceptance, then [they] should accept that claim’ (John 2018, 77). He calls this the ‘epistemological premise’.

Secondly, however, the lay person needs to be convinced that the ‘[i]nstitutional structures are such that the best explanation for the factual content of some claim (made by a scientist, or group, or subject to some consensus) is that this claim meets scientific “epistemic standards” for proper acceptance’ (John 2018, 77). He calls this the ‘sociological premise.’ He suggests, rightly, I think, that this is the premise in dispute in many contemporary cases of distrust in science. Climate change sceptics (if that is the right word) typically do not doubt that we should accept claims that meet scientific epistemic standards; rather, they doubt that the ‘socio-epistemic institutions’ that produce scientific claims about climate change are in fact working as they should (John 2018, 77).

Consider the example of the so-called ‘climate-gate’ controversy, in which a cache of emails between a number of prominent climate scientists were made public on the eve of a major international climate summit in 2009. The emails below (quoted in Moore 2017, 141) were full of claims that might – to the unitiated – look like evidence of sharp practice. For example:

“I should warn you that some data we have we are not supposed [to] pass on to others. We can pass on the gridded data—which we do. Even if WMO [World Meteorological Organization] agrees, I will still not pass on the data. We have 25 or so years invested in the work. Why should I make the data available to you, when your aim is to try and find something wrong with it.”

“You can delete this attachment if you want. Keep this quiet also, but this is the person who is putting in FOI requests for all emails Keith and Tim have written and received re Ch 6 of AR4 We think we’ve found a way around this.”

“The other paper by MM is just garbage. … I can’t see either of these papers being in the next IPCC report. Kevin and I will keep them out somehow – even if we have to redefine what the peer-review literature is!”

“I’ve just completed Mike’s Nature trick of adding in the real temps to each series for the last 20 years (ie from 1981 onwards) amd [sic] from 1961 for Keith’s to hide the decline.”

As Phil Jones, then director of the Climate Research Unit, later admitted, the emails “do not read well.”[1] However, neither, on closer inspection,[2] did they show anything particularly out of the ordinary, and certainly nothing like corruption or fraud. Most of the controversy, it seemed, came from lay people misinterpreting the backstage conversation of scientists in light of a misleading image of what good science is supposed to look like.

The Illusions of Folk Philosophy of Science

This is the central problem identified in John’s paper. Many people, he suggests, evaluate the ‘sociological premise’ in light of a ‘folk philosophy of science’ that is worlds away from the reality of scientific practice. For this reason, revealing to a non-expert public how the sausage is made can lead not to understanding, ‘but to greater confusion’ (John 2017, 82). And worse, as he suggests happened in the climate-gate case, it might lead people to reject well-founded scientific claims in the mistaken belief that they did not meet proper epistemic standards within the relevant epistemic community. Transparency might thus lead to unwarranted distrust.

In a perfect world we might educate everybody in the theory and practice of modern science. In the absence of such a world, however, scientists need to play along with the folk belief in order to get lay audiences to adopt those claims that are in their epistemic best interests. Thus, John argues, scientists explaining themselves to lay publics should seek to ‘well-lead’ (the benevolent counterpart to mislead) their audience. That is, they should try to bring the lay person to hold the most epistemically sound beliefs, even if this means masking uncertainties, glossing complications, pretending more precision than you know to be the case, and so on.

Although John presents his argument as something close to heresy, his model of ‘well-leading’ speech describes a common enough practice. Economists, for instance, face a similar temptation to mask uncertainties and gloss complications and counter-arguments when engaging with political leaders and wider publics on issues such as the benefits and disadvantages of free trade policies.

As Dani Rodrik puts it:

As a professional economist, as an academic economist, day in and day out I see in seminars and papers a great variety of views on what the effects of trade agreements are, the ambiguous effects of deep integration. Inside economics, you see that there is not a single view on globalization. But the moment that gets translated into the political domain, economists have this view that you should never provide ammunition to the barbarians. So the barbarians are these people who don’t understand the notion of comparative advantage and the gains from trade, and you don’t want… any of these caveats, any of these uncertainties, to be reflected in the public debate. (Rodrik 2017, at c.30-34 mins).

‘Well-leading’ speech seems to be the default mode for experts talking to lay audiences.

An Intentional Deception

A crucial feature of ‘well-leading’ speech is that it has no chance of working if you tell the audience what you are up to. It is a strategy that cannot be openly avowed without undermining itself, and thus relies on a degree of deception. Furthermore, the well-leading strategy only works if the audience already trusts the experts in question, and is unlikely to help – and is likely to actively harm expert credibility – in context where experts are already under suspicion and scrutiny. John thus admits that this strategy can backfire if the audience is made aware of some of the hidden complications, and worse, as was case of in climate-gate, if it seems the experts actively sought to evade demands for transparency and accountability (John 2017, 82).

This puts experts in a bind: be ‘open and honest’ and risk being misunderstood; or engage in ‘well-leading’ speech and risk being exposed – and then misunderstood! I’m not so sure the dilemma is actually as stark as all that, but John identifies a real and important problem: When an audience misunderstands what the proper conduct of some activity consists in, then revealing information about the conduct of the activity can lead them to misjudge its quality. Furthermore, to the extent that experts have to adjust their conduct to conform to what the audience thinks it should look like, revealing information about the process can undermine the quality of the outcomes.

One economist has thus argued that accountability works best when it is based on information about outcomes, and that information about process ‘can have detrimental effects’ (Prat 2005: 863). By way of example, she compares two ways of monitoring fund managers. One way is to look at the yearly returns. The other way (exemplified, in her case, by pension funds), involves communicating directly with fund managers and demanding that they ‘explain their investment strategy’ (Prat 2005, 870). The latter strategy, she claims, produces worse outcomes than those monitored only by their results, because the agents have an incentive to act in a way that conforms to what the principal regards as appropriate rather than what the agent regards as the most effective action.

Expert Accountability

The point here is that when experts are held accountable – at the level of process – by those without the relevant expertise, their judgment is effectively displaced by that of their audience. To put it another way, if you want the benefit of expert judgment, you have to forgo the urge to look too closely at what they are doing. Onora O’Neill makes a similar point: ‘Plants don’t flourish when we pull them up too often to check how their roots are growing: political, institutional and professional life too may not flourish if we constantly uproot it to demonstrate that everything is transparent and trustworthy’ (O’Neill 2002: 19).

Of course, part of the problem in the climate case is that the outcomes are also subject to expert interpretation. When evaluating a fund manager you can select good people, leave them alone, and check that they hit their targets. But how do you evaluate a claim about likely sea-level rise over the next century? If radical change is needed now to avert such catastrophic effects, then the point is precisely not to wait and see if they are right before we act. This means that both the ‘select and trust’ and the ‘distrust and monitor’ models of accountability are problematic, and we are back with the problem: How can accountability work when you don’t know enough about the activity in question to know if it’s being done right? How are we supposed to hold experts accountable in ways that don’t undermine the very point of relying on experts?

The idea that communicative accountability to lay people can only diminish the quality either of warranted trust (John’s argument) or the quality of outcomes (Prat’s argument) presumes that expert knowledge is a finished product, so to speak. After all, if experts have already done their due diligence and could not get a better answer, then outsiders have nothing epistemically meaningful to add. But if expert knowledge is not a finished product, then demands for accountability from outsiders to the expert community can, in principle, have some epistemic value.

Consider the case of HIV-AIDS research and the role of activists in challenging expert ideas of what constituted ‘good science’ in conduct of clinical trials. In this engagement they ‘were not rejecting medical science,’ but were rather “denouncing some variety of scientific practice … as not conducive to medical progress and the health and welfare of their constituency” (Epstein 1996: 2). It is at least possible that the process of engaging with and responding to criticism can lead to learning on both sides and the production, ultimately, of better science. What matters is not whether the critics begin with an accurate view of the scientific process; rather, what matters is how the process of criticism and response is carried out.

On 25 April 2012, the AIDS Coalition to Unleash Power (ACT UP) celebrated its 25th anniversary with a protest march through Manhattan’s financial district. The march, held in partnership with Occupy Wall Street, included about 2000 people.
Image by Michael Fleshman via Flickr / Creative Commons

 

We Are Never Alone

This leads me to an important issue that John doesn’t address. One of the most attractive features of his approach is that he moves beyond the limited examples, prevalent in the social epistemology literature, of one lay person evaluating the testimony of one expert, or perhaps two competing experts. He rightly observes that experts speak for collectives and thus that we are implicitly judging the functioning of institutions when we judge expert testimony. But he misses an analogous sociological problem on the side of the lay person. We rarely judge alone. Rather, we use ‘trust proxies’ (MacKenzie and Warren 2012).

I may not know enough to know whether those climate scientists were not doing good science, but others can do that work for me. I might trust my representatives, who have on my behalf conducted open investigations and inquiries. They are not climate scientists, but they have given the matter the kind of sustained attention that I have not. I might trust particular media outlets to do this work. I might trust social movements.

To go back to the AIDS case, ACT-UP functioned for many as a trust proxy of this sort, with the skills and resources to do this sort of monitoring, developing competence but with interests more closely aligned with the wider community affected by the issue. Or I might even trust the judgments of groups of citizens randomly selected and given an opportunity to more deeply engage with the issues for just this purpose (see Gastil, Richards, and Knobloch 2014).

This hardly, on its own, solves the problem of lay judgment of experts. Indeed, it would seem to place it at one remove and introduce a layer of intermediaries. But it is worth attending to these sorts of judgments for at least two reasons. One is because, in a descriptive sense, this is what actually seems to be going on with respect to expert-lay judgment. People aren’t directly judging the claims of climate scientists, and they’re not even judging the functioning of scientific institutions; they’re simply taking cues from their own trusted intermediaries. The second is that the problems and pathologies of expert-lay communication are, in large part, problems with their roots in failures of intermediary institutions and practices.

To put it another way, I suspect that a large part of John’s (legitimate) concern about transparency is at root a concern about unmediated lay judgment of experts. After all, in the climate-gate case, we are dealing with lay people effectively looking over the shoulders of the scientists as they write their emails. One might have similar concerns about video monitoring of meetings: they seem to show you what is going on but in fact are likely to mislead you because you don’t really know what you’re looking at (Licht and Naurin 2015). You lack the context and understanding of the practice that can be provided by observers, who need not themselves be experts, but who need to know enough about the practice to tell the difference between good and bad conduct.

The same idea can apply to transparency of reasoning, involving the demand that actors give a public account of their actions. While the demand that authorities explain how and why they reached their judgments seems to fall victim to the problem of lay misunderstanding, it also offers a way out of it. After all, in John’s own telling of the case, he explains in a convincing way why the first impression (that the ‘sociological premise’ has not been fulfilled) is misleading. The initial scandal initiated a process of scrutiny in which some non-experts (such as the political representatives organising the parliamentary inquiry) engaged in closer scrutiny of the expert practice in question.

Practical lay judgment of experts does not require that lay people become experts (as Lane 2014 and Moore 2017 have argued), but it does require a lot more engagement than the average citizen would either want or have time for. The point here is that most citizens still don’t know enough to properly evaluate the sociological premise and thus properly interpret information they receive about the conduct of scientists. But they can (and do) rely on proxies to do the work of monitoring and scrutinizing experts.

Where does this leave us? John is right to say that what matters is not the generation of trust per se, but warranted trust, or an alignment of trust and trustworthiness. What I think he misses is that distrust is crucial to the possible way in which transparency can (potentially) lead to trustworthiness. Trust and distrust, on this view, are in a dynamic relation: Distrust motivates scrutiny and the creation of institutional safeguards that make trustworthy conduct more likely. Something like this case for transparency was made by Jeremy Bentham (see Bruno 2017).

John rightly points to the danger that popular misunderstanding can lead to a backfire in the transition from ‘scrutiny’ to ‘better behaviour.’ But he responds by asserting a model of ‘well-leading’ speech that seems to assume that lay people already trust experts, and he thus leaves unanswered the crucial questions raised by his central example: What are we to do when we begin from distrust and suspicion? How we might build trustworthiness out of distrust?

Contact details: alfred.moore@york.ac.uk

References

Bruno, Jonathan. “Vigilance and Confidence: Jeremy Bentham, Publicity, and the Dialectic of Trust and Distrust.” American Political Science Review, 111, no. 2 (2017) pp. 295-307.

Epstein, S. Impure Science: AIDS, Activism and the Politics of Knowledge. Berkeley and Los Angeles, CA: University of California Press, 1996.

Gastil, J., Richards, R. C., & Knobloch, K. R. “Vicarious deliberation: How the Oregon Citizens’ Initiative Review influenced deliberation in mass elections.” International Journal of Communication, 8 (2014), 62–89.

John, Stephen. “Epistemic trust and the ethics of science communication: against transparency, openness, sincerity and honesty.” Social Epistemology: A Journal of Knowledge, Culture and Policy 32, no. 2 (2017) 75-87.

Lane, Melissa. “When the Experts are Uncertain: Scientific Knowledge and the Ethics of Democratic Judgment.” Episteme 11, no. 1 (2014) 97-118.

Licht, Jenny de Fine, and Daniel Naurin. “Open Decision-Making Procedures and Public Legitimacy: An Inventory of Causal Mechanisms”. In Jon Elster (ed), Secrecy and Publicity in Votes and Debates. Cambridge: Cambridge University Press (2015), 131-151.

MacKenzie, Michael, and Mark E. Warren, “Two Trust-Based Uses of Minipublics.” In John Parkinson and Jane Mansbridge (eds.) Deliberative Systems. Cambridge: Cambridge University Press (2012), 95-124.

Moore, Alfred. Critical Elitism: Deliberation, Democracy, and the Politics of Expertise. Cambridge: Cambridge University Press, 2017.

Oken, Donald. “What to Tell Cancer Patients: A Study of Medical Attitudes.” Journal of the American Medical Association 175, no. 13 (1961) 1120-1128.

O’Neill, Onora. A Question of Trust. Cambridge: Cambridge University Press, 2002.

Prat, Andrea. The Wrong Kind of Transparency. The American Economic Review 95, no. 3 (2005), 862-877.

[1] In a statement released on 24 November 2009, http://www.uea.ac.uk/mac/comm/media/press/2009/nov/cruupdate

[2] One of eight separate investigations was by the House of Commons select committee on Science and Technology (http://www.publications.parliament.uk/pa/cm200910/cmselect/cmsctech/387/38702.htm).