Archives For philosophy of science

Author Information: Moti Mizrahi, Florida Institute of Technology, mmizrahi@fit.edu

Mizrahi, Moti. “The (Lack of) Evidence for the Kuhnian Image of Science.” Social Epistemology Review and Reply Collective 7, no. 7 (2018): 19-24.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3Z5

See also:

Image by Narcis Sava via Flickr / Creative Commons

 

Whenever the work of an influential philosopher is criticized, a common move made by those who seek to defend the influential philosopher’s work is to claim that his or her ideas have been misconstrued. This is an effective move, of course, for it means that the critics have criticized a straw man, not the ideas actually put forth by the influential philosopher. However, this move can easily backfire, too.

For continued iterations of this move could render the ideas in question immune to criticism in a rather ad hoc fashion. That is to say, shouting “straw man” every time an influential philosopher’s ideas are subjected to scrutiny is rather like shouting “wolf” when none is around; it could be seen as an attempt to draw attention to that which may not be worthy of attention.

The question, then, is whether the influential philosopher’s ideas are worthy of attention and/or acceptance. In particular, are Kuhn’s ideas about scientific revolutions and incommensurability worthy of acceptance? As I have argued, along with a few other contributors to my edited volume, The Kuhnian Image of Science: Time for a Decisive Transformation? (2018), they may not be because they are based on dubious assumptions and fallacious argumentation.

In their reviews of The Kuhnian Image of Science: Time for a Decisive Transformation? (2018), both Markus Arnold (2018) and Amanda Bryant (2018) complain that the contributors who criticize Kuhn’s theory of scientific change have misconstrued his philosophy of science and they praise those who seek to defend the Kuhnian image of science. In what follows, then, I would like to address their claims about misconstruing Kuhn’s theory of scientific change. But my focus here, as in the book, will be the evidence (or lack thereof) for the Kuhnian image of science. I will begin with Arnold’s review and then move on to Bryant’s review.

Arnold on the Evidence for the Kuhnian Image of Science

Arnold (2018, 42) states that “one of the results of [his] review” is that “the ‘inductive reasoning’ intended to refute Kuhn’s incommensurability thesis (found in the first part of the book) is actually its weakest part.” I am not sure what he means by that exactly. First, I am not sure in what sense inductive reasoning can be said to refute a thesis, given that inductive arguments are the sort of arguments whose premises do not necessitate the truth of their conclusions, whereas a refutation of p, if sound, supposedly shows that p must be false.

Second, contrary to what Arnold claims, I do not think that the chapters in Part I of the book contain “‘inductive reasoning’ intended to refute Kuhn’s incommensurability thesis” (Arnold 2018, 42). Speaking of my chapter in particular, Chapter 1 (Mizrahi 2018b, 32-38), it contains two arguments intended to show that there is no deductive support for the Kuhnian thesis of taxonomic incommensurability (Mizrahi 2018b, 32), and an argument intended to show that there is no inductive support for the Kuhnian thesis of taxonomic incommensurability (Mizrahi 2018b, 37).

These arguments are deductive, not inductive, for their premises, if true, guarantee the truth of their conclusions. Besides, to argue that there is no evidence for p is not the same as arguing that p is false. None of my arguments is intended to show that p (namely, the Kuhnian thesis of taxonomic incommensurability) is false.

Rather, my arguments show that there is no evidence for p (namely, the Kuhnian thesis of taxonomic incommensurability). For these reasons, as a criticism of Part I of the book, Arnold’s (2018, 42) claim that “the ‘inductive reasoning’ intended to refute Kuhn’s incommensurability thesis (found in the first part of the book) is actually its weakest part” completely misses the mark.

Moreover, the only thing I could find in Arnold’s review that could be construed as support for this claim is the aforementioned complaint about straw-manning Kuhn. As Arnold (2018, 43) puts it, “the counter-arguments under consideration brought forward against his model seem, paradoxically, to underestimate the complexity of Kuhn’s claims.”

In other words, Kuhn’s theory of scientific change is so complex and those who attempt to criticize it fail to appreciate its complexity. But why? Why do the criticisms fail to appreciate the complexity of Kuhn’s theory? How complex is it such that it defies interpretation and criticism? Arnold does not say. Instead, he (Arnold 2018, 43) states that “it is not clear, why Kuhn’s ‘image of science’ should be dismissed because […] taxonomic incommensurability ‘is the exception rather than the rule’ [Mizrahi 2018b,] (38).”

As I argue in Chapter 1, however, the fact that taxonomic incommensurability “is the exception rather than the rule” (Mizrahi 2018b, 38) means that Kuhn’s theory of scientific change is a bad theory because it shows that Kuhn’s theory has neither explanatory nor predictive power. A “theory” with no explanatory and/or predictive power is no theory at all (Mizrahi 2018b, 37-38). From his review, however, it is clear that Arnold thinks of Kuhn’s image of science as a theory of scientific change.

For instance, he talks about “Kuhn’s epistemology” (Arnold 2018, 45), “Kuhn’s theory of incommensurability” (Arnold 2018, 46), and Kuhn’s “complex theory of science” (Arnold 2018, 42). If Kuhn’s thesis of taxonomic incommensurability has no explanatory and/or predictive power, then it is a bad theory, perhaps not even a theory at all, let alone a general theory of scientific knowledge or scientific change.

In that respect, I found it rather curious that, on the one hand, Arnold approves of Alexandra Argamakova’s (2018) criticism of the universal ambitions of Kuhn’s image of science, but on the other hand, he wants to attribute to Kuhn the view that “scientific revolutions are rare” (Arnold 2018, 43). Arnold quotes with approval Argamakova’s (2018, 54) claim that “distinct breakthroughs in science can be marked as revolutions, but no universal system of criteria for such appraisal can be formulated in a normative philosophical manner” (emphasis added).

In other words, if Argamakova is right, then there can be no philosophical theory of scientific change in general, Kuhnian or otherwise. So Arnold cannot be in agreement with Argamakova without thereby abandoning the claim that Kuhn’s image of science is an “epistemology” (Arnold 2018, 45) of scientific knowledge or a “complex theory of science” (Arnold 2018, 42).

Arnold (2018, 45) also asserts that “the allegation that Kuhn developed his theory on the basis of selected historical cases is refuted” by Kindi (2018). Even if that were true, it would mean that Kuhn’s theory has no inductive support, as I argue in Chapter 1 of the book (Mizrahi 2018b, 32-38). So I am not sure how this point is supposed to help Arnold in defending the Kuhnian image of science. For if there is no inductive support for the Kuhnian image of science, as Arnold seems to think, and there is no deductive support either, as I (Mizrahi 2018b, 25-44) and Park (2018, 61-74) argue, then what evidence is there for the Kuhnian image of science?

For present purposes, the important point is not how Kuhn “developed his theory” (Arnold 2018, 45) but rather what supports his theory of scientific change. What is the evidence for a Kuhnian theory of scientific change? If I am right (Mizrahi 2018b), or if Park (2018) is right, then there is neither deductive support nor inductive support for a Kuhnian theory of scientific change. If Argamakova is right, then there can be no general theory of scientific change at all, Kuhnian or otherwise.

It is also important to note here that Arnold (2018, 45) praises both Kindi (2018) and Patton (2018) for offering “a close reading of Kuhn’s work,” but he does not mention that they offer incompatible interpretations of that work, specifically, of the evidence for Kuhn’s ideas about scientific change. On Kindi’s reading of Kuhn, the argument for the Kuhnian image of science is a deductive argument from first principles, whereas on Patton’s reading of Kuhn, the argument for the Kuhnian image of science is an inference to the best explanation (see Patton 2015, cf. Mizrahi 2018a, 12-13; Mizrahi 2015, 51-53).

Bryant on the Evidence for the Kuhnian Image of Science

Like Arnold, Bryant (2018, 1) wonders whether Kuhn’s views on scientific change can be pinned down and criticized or perhaps there are many “Thomases Kuhn.” Again, I think we do not want to make Kuhn’s views too vague and/or ambiguous (Argamakova 2018, 47-50), and thus immune to criticism in a rather ad hoc fashion. For that, in addition to being based on dubious assumptions and fallacious argumentation, would be another reason to think that Kuhn’s views are not worthy of acceptance.

Bryant (2018, 1) also wonders “whether the so-called Kuhnian image of science is really so broadly endorsed as to be the potential subject of (echoing Kuhn’s own phrase) a ‘decisive transformation’.” As I see it, however, the question is not whether the Kuhnian image of science is “broadly endorsed.” Rather, the question is whether “we are now possessed” by it. When Kuhn wrote that (in)famous first line of the introduction to The Structure of Scientific Revolutions, the image of science by which we were possessed was a positivist image of science according to which science develops “by the accumulation of individual discoveries and inventions” (Kuhn 1962/1996, 2). Arguably, philosophers of science were never possessed by such a positivist image of science as much as they are possessed by the Kuhnian image of science.

This is evidenced by the fact that no positivist work in philosophy of science has had as much impact as Kuhn’s seminal work (Mizrahi 2018a, 1-2). Accordingly, even if the Kuhnian image of science is not “broadly endorsed,” it is quite clear that philosophers of science are possessed by it. For this reason, an “exorcism,” or a “decisive transformation,” is required in order to rid ourselves of this image of science. And what better way to do so than by showing that it is based on dubious assumptions and fallacious argumentation.

As far as the evidence (or lack thereof) for the Kuhnian image of science, Bryant (2018, 2) claims that “Case studies can be interesting, informative, and evidential” (emphasis added). I grant that case studies can be interesting and informative, but I doubt that they can be evidential. From “Scientific episode E has property F,” it does not follow that F is a characteristic of scientific episodes in general. As far as Kuhn is concerned, it is clear that he used just a few case studies (e.g., the phlogiston case) in support of his ideas about scientific change and incommensurability.

The problem with that, as I argue in Chapter 1 of the book (Mizrahi 2018b, 32-38), is that no general theory of scientific change can be derived from a few cherry-picked case studies. Even if we grant that the phlogiston case is a genuine case of a so-called “Kuhnian revolution” and taxonomic incommensurability, despite the fact that there are rebutting defeaters (Mizrahi 2018b, 33-36), no general conclusions about the nature of science can be drawn from one (or even a few) such cases (Mizrahi 2018b, 36-37).

From the fact that one (or a few) cherry-picked episode(s) from the history of science exhibits a particular property, it does not follow that all scientific episodes have that property; otherwise, from the “Piltdown man” episode we would have to conclude that fraud characterizes scientific discovery in general (Mizrahi 2018b, 37-38).

Speaking of scientific discovery, Bryant (2018, 2) takes issue with the fact that I cite “just two authors, Eric Oberheim and Paul Hoyningen-Huene, who use the language of discovery to characterize incommensurability.” For Bryant (2018, 2), this suggests that “it isn’t clear that the assumption Mizrahi takes pains to reject is particularly widespread” (emphasis added). I suppose that “the assumption” in question here is that Kuhn “discovered” incommensurability.

If so, then I would like to clarify that I mention the fact that Oberheim and Hoyningen-Huene talk about incommensurability in terms of discovery, and claim that Kuhn “discovered” it, not to argue against it (i.e., to argue that Kuhn did not discover incommensurability), but rather to show that some of the elements of the Kuhnian image of science, such as incommensurability, are sometimes taken for granted. When it is said that someone has discovered something, it gives the impression that what has been discovered is a fact, and so no arguments are needed.

When it comes to incommensurability, however, it is far from clear that it is a fact about scientific change, and so good arguments are needed in order to establish that episodes of scientific change exhibit taxonomic incommensurability. If I am right, or if Park (2018) and Sankey (2018) are right, then there are no good arguments that establish this.

Not Conclusions, But Questions

In light of the above, I think that the questions raised in the edited volume under review remain urgent (cf. Rehg 2018). Are there good reasons or compelling evidence for the Kuhnian model of theory change in science? If there are no good reasons or compelling evidence for such a model, as I (Mizrahi 2018b), Park (2018), and Sankey (2018) argue, what’s next for philosophers of science? Should we abandon the search for a general theory of science, as Argamakova (2018) suggests? Are there better models of scientific change? Perhaps evolutionary (Marcum 2018) or orthogenetic (Renzi and Napolitano 2018) models?

• • •

I would like to thank Markus Arnold and Amanda Bryant for their thoughtful reviews. I am also grateful to Adam Riggio and Eric Kerr for organizing this book symposium and for inviting me to participate.

Contact details: mmizrahi@fit.edu

References

Argamakova, Alexandra. “Modeling Scientific Development: Lessons from Thomas Kuhn.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 45-59. London: Rowman & Littlefield, 2018.

Arnold, Markus. “Is There Anything Wrong With Thomas Kuhn?” Social Epistemology Review and Reply Collective 7, no. 5 (2018): 42-47.

Bryant, Amanda. “Each Kuhn Mutually Incommensurable.” Social Epistemology Review and Reply Collective 7, no. 6 (2018): 1-7.

Kindi, Vasso. “The Kuhnian Straw Man.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 95-112. London: Rowman & Littlefield, 2018.

Kuhn, Thomas S. The Structure of Scientific Revolutions. Third Edition. Chicago: The University of Chicago Press, 1962/1996.

Marcum, James A. “Revolution or Evolution in Science? A Role for the Incommensurability Thesis?” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 155-173. London: Rowman & Littlefield, 2018.

Mizrahi, Moti. “A Reply to Patton’s ‘Incommensurability and the Bonfire of the Meta-Theories.” Social Epistemology Review and Reply Collective 4, no. 10 (2015): 51-53.

Mizrahi, Moti. “Introduction.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 1-22. London: Rowman & Littlefield, 2018a.

Mizrahi, Moti. “Kuhn’s Incommensurability Thesis: What’s the Argument?” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 25-44. London: Rowman & Littlefield, 2018b.

Park, Seungbae. “Can Kuhn’s Taxonomic Incommensurability be an Image of Science?” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 61-74. London: Rowman & Littlefield, 2018.

Patton, Lydia. “Incommensurability and the Bonfire of the Meta-Theories: Response to Mizrahi.” Social Epistemology Review and Reply Collective 4, no. 7 (2015): 51-58.

Patton, Lydia. “Kuhn, Pedagogy, and Practice: A Local Reading of Structure.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 113-130. London: Rowman & Littlefield, 2018.

Rehg, William. “Kuhn’s Image of Science.” Metascience (2018): https://doi.org/10.1007/s11016-018-0306-2.

Renzi, Barbara G. and Giulio Napolitano. “The Biological Metaphors of Scientific Change.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 177-190. London: Rowman & Littlefield, 2018.

Author Information: James A. Marcum, Baylor University, james_marcum@baylor.edu

Marcum, James A. “A Role for Taxonomic Incommensurability in Evolutionary Philosophy of Science.” Social Epistemology Review and Reply Collective 7, no. 7 (2018): 9-14.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3YP

See also:

Image by Sanofi Pasteur via Flickr / Creative Commons

 

In a review of my chapter (Marcum 2018), Amanda Bryant (2018) charges me with failing to discuss the explanatory role taxonomic incommensurability (TI) plays in my revision of Kuhn’s evolutionary philosophy of science. To quote Bryant at length,

One of Marcum’s central aims is to show that incommensurability plays a key explanatory role in a refined version of Kuhn’s evolutionary image of science. The role of incommensurability on this view is to account for scientific speciation. However, Marcum shows only that we can characterize scientific speciation in terms of incommensurability, without clearly establishing the explanatory payoff of so doing. He does not succeed in showing that incommensurability has a particularly enriching explanatory role, much less that incommensurability is “critical for conceptual evolution within the sciences” or “an essential component of…the growth of science” (168).

Bryant is right. I failed to discuss the explanatory role of TI for the three historical case studies, as listed in Table 8.1, in section 5, “Revising Kuhn’s Evolutionary Image of Science and Incommensurability,” of my chapter. Obviously, my aim in this response, then, is to amend that failure by discussing TI’s role in the case studies and by revising the chapter’s Table to include TI.

Before discussing the role of TI in the historical case studies, I first develop the notion of TI in terms of Kuhn’s revision of the original incommensurability thesis. Kuhn (1983) responded to critics of the original thesis in a symposium paper delivered at the 1982 biannual meeting of the Philosophy of Science Association.

In the paper, Kuhn admitted that his primary intention for incommensurability was more “modest” than with what critics had charged him. Rather than radical or universal changes in terms and concepts—what is often called “global” incommensurability (Hoyningen-Huene 2005, Marcum 2015, Simmons 1994)—Kuhn claimed that only a handful of terms and concepts are incommensurable after a paradigm shift. He called this thesis “local” incommensurability.

More Common Than Incommensurable

Kuhn’s revision of the original incommensurability thesis has important implications for the TI thesis. To that end, I propose three types of TI. The first is comparable to Kuhn’s local incommensurability in which only a small number of terms and concepts are incommensurable, between the lexicons of two scientific specialties. The second is akin to global incommensurability in which two lexicons are radically and universally incommensurable with one another—sharing only a few commensurable terms and concepts.

An example of this type of incommensurability is the construction of a drastically new lexicon accompanying the evolution of a specialty. Both local and global TI represent, then, two poles along a continuum. For the type of TI falling along this continuum, I propose the notion of regional TI—in keeping with the geographical metaphor.

Unfortunately, sharper delineation among the three types of TI in terms of the quantity and quality of incommensurable and commensurable terms and concepts composing taxonomically incommensurable lexicons cannot be made currently, other than local TI comprises one end of the continuum while global TI the other end, with regional TI occupying an intermediate position between them. Notwithstanding this imprecise delineation, the three types of TI are apt for explaining the evolution of the microbiological specialties of bacteriology, virology, and retrovirology, especially with respect to their tempos and modes.

Revised Table. Types of tempo, mode, and taxonomic incommensurability for the evolution of microbiological specialties of bacteriology, virology, and retrovirology (see text for details).

Scientific Specialty Tempo Mode Taxonomic

Incommensurability

 

Bacteriology Bradytelic Phyletic Global

 

Virology Tachytelic Quantal Regional

 

Retrovirology Horotelic Speciation Local

 

 

Examples Bacterial and Viral

As depicted in the Revised Table, the evolution of bacteriology, with its bradytelic tempo and phyletic mode, is best accounted for through global TI. A large number of novel incommensurable terms and concepts appeared with the evolution of bacteriology and the germ theory of disease, and global TI afforded the bacteriology lexicon the conceptual space to evolve fully and independently by isolating that lexicon from both botany and zoology lexicons, as well as from other specialty lexicons in microbiology.

For example, in terms of microbiology as a specialty separate from botany and zoology, bacteria are prokaryotes compared to other microorganisms such as algae, fungi, and protozoa, which are eukaryotes. Eukaryotes have a nucleus surrounded by a plasma membrane that separates the chromosomes from the cytoplasm, while prokaryotes do not. Rather, prokaryotes like bacteria have a single circular chromosome located in the nucleoid region of the cell.

However, the bacteriology lexicon does share a few commensurable terms and concepts with the lexicons of other microbiologic specialties and with the cell biology lexicons of botany and zoology. For example, both prokaryotic and eukaryotic cells contain a plasma membrane that separates the cell’s interior from the external environment. Examples of many other incommensurable (and of a few commensurable) terms and concepts make up the lexicons of these specialties but suffice these examples to provide how global TI provided the bacteriology lexicon a cognitive environment so that it could evolve as a distinct specialty.

Also, as depicted in the Revised Table, the evolution of virology, with its tachytelic tempo and quantal mode, is best accounted for through regional TI. A relatively smaller number of new incommensurable terms and concepts appeared with the evolution of virology compared to the evolution of bacteriology, and regional TI afforded the virology lexicon the conceptual space to evolve freely and self-sufficiently by isolating that lexicon from the bacteriology lexicon, as well as from other biology lexicons.

For example, the genome of the virus is surrounded by a capsid or protein shell, which distinguishes it from both prokaryotes and eukaryotes—neither of which have such a structure. Moreover, viruses do not have a constitutive plasma membrane, although some viruses acquire a plasma membrane from the host cell when exiting it during lysis. However, the function of the viral plasma membrane is different from that for both prokaryotes and eukaryotes.

Interestingly, the term plasma membrane for the virology lexicon is both commensurable and incommensurable, when compared to other biology lexicons. The viral plasma membrane is commensurable in that it is comparable in structure to the plasma membrane of prokaryotes and eukaryotes but it is incommensurable in that it functions differently. Finally, some viral genomes are composed of DNA similar to prokaryotic and eukaryotic genomes while others are composed of RNA; and, it is this RNA genome that led to the evolution of the retrovirology specialty.

Image by AJC1 via Flickr / Creative Commons

And As Seen in the Retrovirological

As depicted lastly in the Revised Table, the evolution of retrovirology, with its horotelic tempo and speciation mode, is best accounted for through local TI. An even smaller number of novel incommensurable terms and concepts accompanied the evolution of retrovirology as compared to the number of novel incommensurable terms and concepts involved in the evolution of the virology lexicon vis-à-vis the bacteriology lexicon.

And, as true for the role of TI in the evolution of bacteriology and virology, local TI afforded the retrovirology lexicon the conceptual space to evolve rather autonomously by isolating that lexicon from the virology and bacteriology lexicons. For example, retroviruses, as noted previously, contain only an RNA genome but the replication of the retrovirus and its genome does not involve replication of the RNA genome from the RNA directly, as for other RNA viruses.

Rather, retrovirus replication involves the formation of a DNA provirus through the enzyme reverse transcriptase. The DNA provirus is subsequently incorporated into the host’s genome, where it remains dormant until replication of the retrovirus is triggered.

The incommensurability associated with retrovirology evolution is local since only a few incommensurable terms and concepts separate the virology and retrovirology lexicons. But that incommensurability was critical for the evolution of the retrovirology specialty (although given how few incommensurable terms and concepts exist between the virology and retrovirology lexicons, a case could be made for retrovirology representing a subspecialty of virology).

Where the Payoff Lies

In her review, Bryant makes a distinction, as quoted above, between characterizing the evolution of the microbiological specialties via TI and explaining their evolution via TI. In terms of the first distinction, TI is the product of the evolution of a specialty and its lexicon. In other words, when reconstructing historically the evolution of a specialty, the evolutionary outcome is a new specialty and its lexicon—which is incommensurable locally, regionally, or globally with respect to other specialty lexicons.

For example, the retrovirology lexicon—when compared to the virology lexicon—has few incommensurable terms, such as DNA provirus and reverse transcriptase. The second distinction involves the process or mechanism by which the evolution of the specialty’s lexicon takes place vis-à-vis TI. In other words, TI plays a critical role in the evolutionary process of a specialty and its lexicon.

Keeping with the retrovirology example, the experimental result that actinomysin D inhibits Rous sarcoma virus was an important anomaly with respect to the virology lexicon, which could only explain the replication of RNA viruses in terms of the Central Dogma’s flow of genetic information. TI, then, represents the mechanism, i.e. by providing the conceptual space, for the evolution of a new specialty with respect to incommensurable terms and concepts.

In conclusion, the “explanatory payoff” for TI with respect to the revised Kuhnian evolutionary philosophy of science is that such incommensurability provides isolation for a scientific specialty and its lexicon so that it can evolve from a parental stock. For, without the conceptual isolation to develop its lexicon, a specialty cannot evolve.

Just as biological species like Darwin’s Galápagos finches, for instance, required physical isolation from one another to evolve (Lack 1983), so the evolving microbiological specialties also required conceptual isolation from one another and from other biology specialties and their lexicons. TI accounts for or explains the evolution of science and its specialties in terms of providing the necessary conceptual opportunity for the specialties to emerge and then to evolve.

Moreover, it is of interest to note that an apparent relationship exists between the various tempos and modes and the different types of TI. For example, the retrovirology case study suggests that local TI is commonly associated with a horotelic tempo and speciation mode—which to some extent makes sense intuitively. In other words, speciation requires far fewer lexical changes than phylogeny, which requires many more lexical changes or an almost completely new lexicon—as the evolution of bacteriology illustrates.

The proposed evolutionary philosophy of science, then, accounts for the emergence of bacteriology in terms of a specific tempo and mode, as well as a particular type of TI; and, it thereby provides a rich explanation for its emergence. Furthermore, the quantity and quality of taxonomically incommensurable terms and concepts involved in the evolution of the microbiology specialties suggest the following relative frequency for the different types of TI: local TI > regional RI > global TI.

The Potential of Evolutionary Paradigms

Finally, I proposed in my chapter that Kuhn’s revised evolutionary philosophy of science is a good candidate for a general philosophy of science, even in light of philosophy of science’s current pluralistic or perspectival stance. Interestingly, regardless of the increasing specialization within the natural sciences, these sciences are moving towards integration in order to tackle complex natural phenomena. For example, cancer is simply too complex a disease to succumb to a single specialty (Williams 2015).

The revised Kuhnian evolutionary philosophy of science helps to appreciate and account for the drive and need for integration of different scientific specialties to investigate complex natural phenomena, such as cancer. Specifically, one of the important reasons for the integration is that no single scientist can master the necessary lexicons, whether biochemistry, bioinformatics, cell biology, genomic biology, immunology, molecular biology, physiology, etc., needed to investigate and eventually to cure the disease. A scientist might be bilingual or even trilingual with respect to specialties but certainly not multilingual.

The conceptual and methodological approach, which integrates these various specialties, stands a better chance in discovering the pathological mechanisms involved in carcinogenesis and thereby in developing effective therapies. Integrated science, then, requires a systems or network approach since no one scientists can master the various specialties needed to investigate a complex natural phenomenon.

In the end, TI helps to make sense of why integrated science is important for the future evolution of science and of how an evolutionary philosophy of science can function as a general philosophy of science.

Contact details: james_marcum@baylor.edu

References

Bryant, Amanda. “Each Kuhn Mutually Incommensurable”, Social Epistemology Review and Reply Collective 7, no. 6 (2018): 1-7.

Hoyningen-Huene, Paul. “Three Biographies: Kuhn, Feyerabend, and Incommensurability”, In Rhetoric and Incommensurability. Randy A. Harris (ed.), West Lafayette, IN: Parlor Press, (2005): 150-175.

Kuhn, Thomas S. “Commensurability, Comparability, Communicability”, PSA: 1982, no. 2

(1983): 669-688.

Lack, David. Darwin’s Finches. Cambridge: Cambridge University Press, (1983).

Marcum, James A. Thomas Kuhn’s Revolutions: A Historical and an Evolutionary Philosophy of Science. London: Bloomsbury, (2015).

Marcum, James A. “Revolution or Evolution in Science?: A Role for the Incommensurability Thesis?”, In The Kuhnian Image of Science: Time for a Decisive Transformation? Moti Mizrahi (ed.), Lanham, MD: Rowman & Littlefield, (2018): 155-173.

Simmons, Lance. “Three Kinds of Incommensurability Thesis”, American Philosophical Quarterly 31, no. 2 (1994): 119-131.

Williams, Sarah C.P. “News Feature: Capturing Cancer’s Complexity”, Proceedings of the National Academy of Sciences, 112, no. 15 (2015): 4509-4511.

Author Information: Seungbae Park, Ulsan National Institute of Science and Technology, nature@unist.ac.kr

Park, Seungbae. “Philosophers and Scientists are Social Epistemic Agents.” Social Epistemology Review and Reply Collective 7, no. 6 (2018): 31-40.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3Yo

Please refer to:

The example is from the regime of Hosni Mubarak, but these were the best photos the Digital Editor could find in Creative Commons when he was uploading the piece.

The style of examples common to epistemology, whether social or not, are often innocuous, ordinary situation. But the most critical uses and misuses of knowledge and belief remain all-too-ordinary situations already. If scepticism about our powers to know and believe hold – or are at least held sufficiently – then the most desperate political prisoner has lost her last glimmer of hope. Truth.
Image by Hossam el-Hamalawy via Flickr / Creative Commons

 

In this paper, I reply to Markus Arnold’s comment and Amanda Bryant’s comment on my work “Can Kuhn’s Taxonomic Incommensurability be an Image of Science?” in Moti Mizrahi’s edited collection, The Kuhnian Image of Science: Time for a Decisive Transformation?.

Arnold argues that there is a gap between the editor’s expressed goal and the actual content of the book. Mizrahi states in the introduction that his book aims to increase “our understanding of science as a social, epistemic endeavor” (2018: 7). Arnold objects that it is “not obvious how the strong emphasis on discounting Kuhn’s incommensurability thesis in the first part of the book should lead to a better understanding of science as a social practice” (2018: 46). The first part of the volume includes my work. Admittedly, my work does not explicitly and directly state how it increases our understanding of science as a social enterprise.

Knowledge and Agreement

According to Arnold, an important meaning of incommensurability is “the decision after a long and futile debate to end any further communication as a waste of time since no agreement can be reached,” and it is this “meaning, describing a social phenomenon, which is very common in science” (Arnold, 2018: 46). Arnold has in mind Kuhn’s claim that a scientific revolution is completed not when opposing parties reach an agreement through rational argumentations but when the advocates of the old paradigm die of old age, which means that they do not give up on their paradigm until they die.

I previously argued that given that most recent past paradigms coincide with present paradigms, most present paradigms will also coincide with future paradigms, and hence “taxonomic incommensurability will rarely arise in the future, as it has rarely arisen in the recent past” (Park, 2018: 70). My argument entails that scientists’ decision to end further communications with their opponents has been and will be rare, i.e., such a social phenomenon has been and will be rare.

On my account, the opposite social phenomenon has been and will rather be very common, viz., scientists keep communicating with each other to reach an agreement. Thus, my previous contention about the frequency of scientific revolutions increases our understanding of science as a social enterprise.

Let me now turn to Bryant’s comment on my criticism against Thomas Kuhn’s philosophy of science. Kuhn (1962/1970, 172–173) draws an analogy between the development of science and the evolution of organisms. According to evolutionary theory, organisms do not evolve towards a goal. Similarly, Kuhn argues, science does not develop towards truths. The kinetic theory of heat, for example, is no closer to the truth than the caloric theory of heat is, just as we are no closer to some evolutionary goal than our ancestors were. He claims that this analogy is “very nearly perfect” (1962/1970, 172).

My objection (2018a: 64–66) was that it is self-defeating for Kuhn to use evolutionary theory to justify his philosophical claim about the development of science that present paradigms will be replaced by incommensurable future paradigms. His philosophical view entails that evolutionary theory will be superseded by an incommensurable alternative, and hence evolutionary theory is not trustworthy. Since his philosophical view relies on this untrustworthy theory, it is also untrustworthy, i.e., we ought to reject his philosophical view that present paradigms will be displaced by incommensurable future paradigms.

Bryant replies that “Kuhn could adopt the language of a paradigm (for the purposes of drawing an analogy, no less!) without committing to the literal truth of that paradigm” (2018: 3). On her account, Kuhn could have used the language of evolutionary theory without believing that evolutionary theory is true.

Can We Speak a Truth Without Having to Believe It True?

Bryant’s defense of Kuhn’s position is brilliant. Kuhn would have responded exactly as she has, if he had been exposed to my criticism above. In fact, it is a common view among many philosophers of science that we can adopt the language of a scientific theory without committing to the truth of it.

Bas van Fraassen, for example, states that “acceptance of a theory involves as belief only that it is empirically adequate” (1980: 12). He also states that if “the acceptance is at all strong, it is exhibited in the person’s assumption of the role of explainer” (1980: 12). These sentences indicate that according to van Fraassen, we can invoke a scientific theory for the purpose of explaining phenomena without committing to the truth of it. Rasmus Winther (2009: 376), Gregory Dawes (2013: 68), and Finnur Dellsén (2016: 11) agree with van Fraassen on this account.

I have been pondering this issue for the past several years. The more I reflect upon it, however, the more I am convinced that it is problematic to use the language of a scientific theory without committing to the truth of it. This thesis would be provocative and objectionable to many philosophers, especially to scientific antirealists. So I invite them to consider the following two thought experiments.

First, imagine that an atheist uses the language of Christianity without committing to the truth of it (Park, 2015: 227, 2017a: 60). He is a televangelist, saying on TV, “If you worship God, you’ll go to heaven.” He converts millions of TV viewers into Christianity. As a result, his church flourishes, and he makes millions of dollars a year. To his surprise, however, his followers discover that he is an atheist.

They request him to explain how he could speak as if he were a Christian when he is an atheist. He replies that he can use the language of Christianity without believing that it conveys truths, just as scientific antirealists can use the language of a scientific theory without believing that it conveys the truth.

Second, imagine that scientific realists, who believe that our best scientific theories are true, adopts Kuhn’s philosophical language without committing to Kuhn’s view of science. They say, as Kuhn does, “Successive paradigms are incommensurable, so present and future scientists would not be able to communicate with each other.” Kuhn requests them to explain how they could speak as if they were Kuhnians when they are not Kuhnians. They reply that they can adopt his philosophical language without committing to his view of science, just as scientific antirealists can adopt the language of a scientific theory without committing to the truth of it.

The foregoing two thought experiments are intended to be reductio ad absurdum. That is, my reasoning is that if it is reasonable for scientific antirealists to speak the language of a scientific theory without committing to the truth of it, it should also be reasonable for the atheist to speak the language of Christianity and for scientific realists to speak Kuhn’s philosophical language. It is, however, unreasonable for them to do so.

Let me now diagnose the problems with the atheist’s speech acts and scientific realists’ speech acts. The atheist’s speech acts go contrary to his belief that God does not exist, and scientific realists’ speech acts go contrary to their belief that our best scientific theories are true. As a result, the atheist’s speech acts mislead his followers into believing that he is Christian. The scientific realists’ speech acts mislead their hearers into believing that they are Kuhnians.

Moore’s Paradox

Such speech acts raise an interesting philosophical issue. Imagine that someone says, “Snow is white, but I don’t believe snow is white.” The assertion of such a sentence involves Moore’s paradox. Moore’s paradox arises when we say a sentence of the form, “P, but I don’t believe p” (Moore, 1993: 207–212). We can push the atheist above to be caught in Moore’s paradox. Imagine that he says, “If you worship God, you’ll go to heaven.” We request him to declare whether he believes or not what he just said. He declares, “I don’t believe if you worship God, you’ll go to heaven.” As a result, he is caught in Moore’s paradox, and he only puzzles his audience.

The same is true of the scientific realists above. Imagine that they say, “Successive paradigms are incommensurable, so present and future scientists would not be able to communicate with each other.” We request them to declare whether they believe or not what they just said. They declare, “I don’t believe successive paradigms are incommensurable, so present and future scientists would not be able to communicate with each other.” As a result, they are caught in Moore’s paradox, and they only puzzle their audience.

Kuhn would also be caught in Moore’s paradox if he draws the analogy between the development of science and the evolution of organisms without committing to the truth of evolutionary theory, pace Bryant. Imagine that Kuhn says, “Organisms don’t evolve towards a goal. Similarly, science doesn’t develop towards truths. I, however, don’t believe organisms don’t evolve towards a goal.” He says, “Organisms don’t evolve towards a goal. Similarly, science doesn’t develop towards truths” in order to draw the analogy between the development of science and the evolution of organisms. He says, “I, however, don’t believe organisms don’t evolve towards a goal,” in order to express his refusal to believe that evolutionary theory is true. It is, however, a Moorean sentence: “Organisms don’t evolve towards a goal. I, however, don’t believe organisms don’t evolve towards a goal.” The assertion of such a sentence gives rise to Moore’s paradox.

Scientific antirealists would also be caught in Moore’s paradox, if they explain phenomena in terms of a scientific theory without committing to the truth of it, pace van Fraassen. Imagine that scientific antirealists say, “The space between two galaxies expands because dark energy exists between them, but I don’t believe that dark energy exists between two galaxies.” They say, “The space between two galaxies expands because dark energy exists between them,” in order to explain why the space between galaxies expands.

They add, “I don’t believe that dark energy exists between two galaxies,” in order to express their refusal to commit to the truth of the theoretical claim that dark energy exists. It is, however, a Moorean sentence: “The space between two galaxies expands because dark energy exists between them, but I don’t believe that dark energy exists between two galaxies.” Asserting such a sentence will only puzzle their audience. Consequently, Moore’s paradox bars scientific antirealists from invoking scientific theories to explain phenomena (Park, 2017b: 383, 2018b: Section 4).

Researchers on Moore’s paradox believe that “contradiction is at the heart of the absurdity of saying a Moorean sentence, but it is not obvious wherein contradiction lies” (Park, 2014: 345). Park (2014: 345) argues that when you say, “Snow is white,” your audience believe that you believe that snow is white. Their belief that you believe that snow is white contradicts the second conjunct of your Moorean sentence that you do not believe that snow is white.

Thus, the contradiction lies in your audience’s belief and the second conjunct of your Moorean sentence. The present paper does not aim to flesh out and defend this view of wherein lies the contradiction. It rather aims to show that Moore’s paradox prevents us from using the language of a scientific theory without committing to the truth of it, pace Bryant and van Fraassen.

The Real Consequences of Speaking What You Don’t Believe

Set Moore’s paradox aside. Let me raise another objection to Bryant and van Fraassen. Imagine that Kuhn encounters a philosopher of mind. The philosopher of mind asserts, “A mental state is reducible to a brain state.” Kuhn realizes that the philosopher of mind espouses the identity theory of mind, but he knows that the identity theory of mind has already been refuted by the multiple realizability argument. So he brings up the multiple realizability argument to the philosopher of mind. The philosopher of mind is persuaded of the multiple realizability argument and admits that the identity theory is not tenable.

To Kuhn’s surprise, however, the philosopher of mind claims that when he said, “A mental state is reducible to a brain state,” he spoke the language of the identity theory without committing to the truth of it, so his position is not refuted by Kuhn. Note that the philosopher of mind escapes the refutation of his position by saying that he did not believe what he stated. It is also reasonable for the philosopher of mind to escape the refutation of his position by saying that he did not believe what he stated, if it is reasonable for Kuhn to escape the refutation of his position by saying that he did not believe what he stated. Kuhn would think that it is not reasonable for the philosopher of mind to do so.

Kuhn, however, might bite the bullet, saying that it is reasonable for the philosopher of mind to do so. The strategy to avoid the refutation, Kuhn might continue, only reveals that the identity theory was not his position after all. Evaluating arguments does not require that we identify the beliefs of the authors of arguments. In philosophy, we only need to care about whether arguments are valid or invalid, sound or unsound, strong or weak, and so on.

Speculating about what beliefs the authors of arguments hold as a way of evaluating arguments is to implicitly rely on an argument from authority, i.e., it is to think as though the authors’ beliefs determine the strength of arguments rather than the form and content of arguments do.

We, however, need to consider under what conditions we accept the conclusion of an argument in general. We accept it, when premises are plausible and when the conclusion follows from the premises. We can tell whether the conclusion follows from the premises or not without the author’s belief that it does. In many cases, however, we cannot tell whether premises are plausible or not without the author’s belief that they are.

Imagine, for example, that a witness states in court that a defendant is guilty because the defendant was in the crime scene. The judge can tell whether the conclusion follows from the premise or not without the witness’s belief that it does. The judge, however, cannot tell whether the premise is plausible or not without the witness’s belief that it is. Imagine that the witness says that the defendant is guilty because the defendant was in the crime scene, but that the witness declares that he does not believe that the defendant was in the crime scene. Since the witness does not believe that the premise is true, the judge has no reason to believe that it is true. It is unreasonable for the judge to evaluate the witness’s argument independently of whether the witness believes or not that the premise is true.

In a nutshell, an argument loses its persuasive force, if the author of the argument does not believe that premises are true. Thus, if you aim to convince your audience that your argument is cogent, you should believe yourself that the premises are true. If you declare that you do not believe that the premises are true, your audience will ask you some disconcerting questions: “If you don’t, why should I believe what you don’t? How can you say to me what you don’t believe? Do you expect me to believe what you don’t?” (Park, 2018b: Section 4).

In case you still think that it is harmless and legitimate to speak what you do not believe, I invite you to imagine that your political rival commits murder to frame you. A false charge is brought to you, and you are tried in court. The prosecutor has a strong indictment against you. You state vehemently that you did not commit murder. You, however, have no physical evidence supporting your statement. Furthermore, you are well-known as a person who speaks vehemently what you do not believe. Not surprisingly, the judge issues a death sentence on you, thinking that you are merely speaking the language of the innocent. The point of this sad story is that speaking what you do not believe may result in a tragedy in certain cases.

A Solution With a Prestigious Inspiration

Let me now turn to a slightly different, but related, issue. Under what condition can I refute your belief when you speak contrary to what you believe? I can do it only when I have direct access to your doxastic states, i.e., only when I can identify your beliefs without the mediation of your language. It is not enough for me to interpret your language correctly and present powerful evidence against what your language conveys.

After all, whenever I present such evidence to you, you will escape the refutation of what you stated simply by saying that you did not believe what you stated. Thus, Bryant’s defense of Kuhn’s position from my criticism above amounts to imposing an excessively high epistemic standard on Kuhn’s opponents. After all, his opponents do not have direct access to his doxastic states.

In this context, it is useful to be reminded of the epistemic imperative: “Act only on an epistemic maxim through which you can at the same time will that it should become a universal one” (Park, 2018c: 3). Consider the maxim “Escape the refutation of your position by saying you didn’t believe what you stated.” If you cannot will this maxim to become a universal one, you ought not to act on it yourself. It is immoral for you to act on the maxim despite the fact that you cannot will it to become a universal maxim. Thus, the epistemic imperative can be invoked to argue that Kuhn ought not to use the language of evolutionary theory without committing to the truth of it, pace Bryant.

Let me now raise a slightly different, although related, issue. Recall that according to Bryant, Kuhn could adopt the language of evolutionary theory without committing to the truth of it. Admittedly, there is an epistemic advantage of not committing to the truth of evolutionary theory on Kuhn’s part. The advantage is that he might avoid the risk of forming a false belief regarding evolutionary theory. Yet, he can stick to his philosophical account of science according to which science does not develop towards truths, and current scientific theories will be supplanted by incommensurable alternatives.

There is, however, an epistemic disadvantage of not committing to the truth of a scientific theory. Imagine that Kuhn is not only a philosopher and historian of science but also a scientist. He has worked hard for several decades to solve a scientific problem that has been plaguing an old scientific theory. Finally, he hits upon a great scientific theory that handles the recalcitrant problem. His scientific colleagues reject the old scientific theory and accept his new scientific theory, i.e., a scientific revolution occurs.

He becomes famous not only among scientists but also among the general public. He is so excited about his new scientific theory that he believes that it is true. Some philosophers, however, come along and dispirit him by saying that they do not believe that his new theory is true, and that they do not even believe that it is closer to the truth than its predecessor was. Kuhn protests that his new theory has theoretical virtues, such as accuracy, simplicity, and fruitfulness. Not impressed by these virtues, however, the philosophers reply that science does not develop towards truths, and that his theory will be displaced by an incommensurable alternative. They were exposed to Kuhn’s philosophical account of science!

Epistemic Reciprocation

They have adopted a philosophical position called epistemic reciprocalism according to which “we ought to treat our epistemic colleagues, as they treat their epistemic agents” (Park, 2017a: 57). Epistemic reciprocalists are scientific antirealists’ true adversaries. Scientific antirealists refuse to believe that their epistemic colleagues’ scientific theories are true for fear that they might form false beliefs.

In return, epistemic reciprocalists refuse to believe that scientific antirealists’ positive theories are true for fear that they might form false beliefs. We, as epistemic agents, are not only interested in avoiding false beliefs but also in propagating “to others our own theories which we are confident about” (Park, 2017a: 58). Scientific antirealists achieve the first epistemic goal at the cost of the second epistemic goal.

Epistemic reciprocalism is built upon the foundation of social epistemology, which claims that we are not asocial epistemic agents but social epistemic agents. Social epistemic agents are those who interact with each other over the matters of what to believe and what not to believe. So they take into account how their interlocutors treat their epistemic colleagues before taking epistemic attitudes towards their interlocutors’ positive theories.

Let me now turn to another of Bryant’s defenses of Kuhn’s position. She says that it is not clear that the analogy between the evolution of organisms and the development of science is integral to Kuhn’s account. Kuhn could “have ascribed the same characteristics to theory change without referring to evolutionary theory at all” (Bryant, 2018: 3). In other words, Kuhn’s contention that science does not develop towards truths rises or falls independently of the analogy between the development of science and the evolution of organisms. Again, this defense of Kuhn’s position is brilliant.

Consider, however, that the development of science is analogous to the evolution of organisms, regardless of whether Kuhn makes use of the analogy to defend his philosophical account of science or not, and that the fact that they are analogous is a strike against Kuhn’s philosophical account of science. Suppose that Kuhn believes that science does not develop towards truths, but that he does not believe that organisms do not evolve towards a goal, despite the fact that the development of science is analogous to the evolution of organisms.

An immediate objection to his position is that it is not clear on what grounds he embraces the philosophical claim about science, but not the scientific claim about organisms, when the two claims parallel each other. It is ad hoc merely to suggest that the scientific claim is untrustworthy, but that the philosophical claim is trustworthy. What is so untrustworthy about the scientific claim, but so trustworthy about the philosophical claim? It would be difficult to answer these questions because the development of science and the evolution of organisms are similar to each other.

A moral is that if philosophers reject our best scientific theories, they cannot make philosophical claims that are similar to what our best scientific theories assert. In general, the more philosophers reject scientific claims, the more impoverished their philosophical positions will be, and the heavier their burdens will be to prove that their philosophical claims are dissimilar to the scientific claims that they reject.

Moreover, it is not clear what Kuhn could say to scientists who take the opposite position in response to him. They believe that organisms do not evolve towards a goal, but refuse to believe that science does not develop towards truths. To go further, they trust scientific claims, but distrust philosophical claims. They protest that it is a manifestation of philosophical arrogance to suppose that philosophical claims are worthy of beliefs, but scientific claims are not.

This possible response to Kuhn reminds us of the Golden Rule: Treat others as you want to be treated. Philosophers ought to treat scientists as they want to be treated, concerning epistemic matters. Suppose that a scientific claim is similar to a philosophical claim. If philosophers do not want scientists to hold a double standard with respect to the scientific and philosophical claims, philosophers should not hold a double standard with respect to them.

There “is no reason for thinking that the Golden Rule ranges over moral matters, but not over epistemic matters” (Park, 2018d: 77–78). Again, we are not asocial epistemic agents but social epistemic agents. As such, we ought to behave in accordance with the epistemic norms governing the behavior of social epistemic agents.

Finally, the present paper is intended to be critical of Kuhn’s philosophy of science while enshrining his insight that science is a social enterprise, and that scientists are social epistemic agents. I appealed to Moore’s paradox, epistemic reciprocalism, the epistemic imperative, and the Golden Rule in order to undermine Bryant’s defenses of Kuhn’s position from my criticism. All these theoretical resources can be used to increase our understanding of science as a social endeavor. Let me add to Kuhn’s insight that philosophers are also social epistemic agents.

Contact details: nature@unist.ac.kr

References

Arnold, Markus. “Is There Anything Wrong with Thomas Kuhn?”, Social Epistemology Review and Reply Collective 7, no. 5 (2018): 42–47.

Byrant, Amanda. “Each Kuhn Mutually Incommensurable”, Social Epistemology Review and Reply Collective 7, no. 6 (2018): 1–7.

Dawes, Gregory. “Belief is Not the Issue: A Defence of Inference to the Best Explanation”, Ratio: An International Journal of Analytic Philosophy 26, no. 1 (2013): 62–78.

Dellsén, Finnur. “Understanding without Justification or Belief”, Ratio: An International Journal of Analytic Philosophy (2016). DOI: 10.1111/rati.12134.

Kuhn, Thomas. The Structure of Scientific Revolutions. 2nd ed. The University of Chicago Press, (1962/1970).

Mizrahi, Moti. “Introduction”, In The Kuhnian Image of Science: Time for a Decisive Transformation? Moti Mizrahi (ed.), London: Rowman & Littlefield, (2018): 1–22.

Moore, George. “Moore’s Paradox”, In G.E. Moore: Selected Writings. Baldwin, Thomas (ed.), London: Routledge, (1993).

Park, Seungbae. “On the Relationship between Speech Acts and Psychological States”, Pragmatics and Cognition 22, no. 3 (2014): 340–351.

Park, Seungbae. “Accepting Our Best Scientific Theories”, Filosofija. Sociologija 26, no. 3 (2015): 218–227.

Park, Seungbae. “Defense of Epistemic Reciprocalism”, Filosofija. Sociologija 28, no. 1 (2017a): 56–64.

Park, Seungbae. “Understanding without Justification and Belief?” Principia: An International Journal of Epistemology 21, no. 3 (2017b): 379–389.

Park, Seungbae. “Can Kuhn’s Taxonomic Incommensurability Be an Image of Science?” In The Kuhnian Image of Science: Time for a Decisive Transformation? Moti Mizrahi (ed.), London: Rowman & Littlefield, (2018a): 61–74.

Park, Seungbae. “Should Scientists Embrace Scientific Realism or Antirealism?”, Philosophical Forum (2018b): (to be assigned).

Park, Seungbae. “In Defense of the Epistemic Imperative”, Axiomathes (2018c). DOI: https://doi.org/10.1007/s10516-018-9371-9.

Park, Seungbae. “The Pessimistic Induction and the Golden Rule”, Problemos 93 (2018d): 70–80.

van Fraassen, Bas. The Scientific Image. Oxford: Oxford University Press, (1980).

Winther, Rasmus. “A Dialogue”, Metascience 18 (2009): 370–379.

Author Information: Amanda Bryant, Trent University, amandabryant@trentu.ca

Bryant, Amanda. “Each Kuhn Mutually Incommensurable.” Social Epistemology Review and Reply Collective 7, no. 6 (2018): 1-7.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3XM

Image by Denis Defreyne via Flickr / Creative Commons

 

This volume is divided into four parts, in which its contributors variously Question, Defend, Revise, or Abandon the Kuhnian image of science. One immediately wonders: what is this thing, the Kuhnian Image of Science? It isn’t a question that can be decisively or quickly settled, of course. Perhaps one of the reasons why so much has been written on Kuhn’s philosophy of science is that it gives rise to such rich interpretive challenges.

Informed general philosophy of science readers will of course know the tagline version of Kuhn’s view — namely, that the development of science unfolds in wholesale revolutions of scientific paradigms that are in some sense incommensurable with one another. However, one might think that whatever the image of science at issue in this volume is, it should be a sharper image than that.

Many Thomases Kuhn

But of course there isn’t really a single, substantive, cohesive, uncontroversial image at issue. Alexandra Argamakova rightly points out in her contribution, “there exist various images of science belonging to different Thomas Kuhns at different stages of his work life and from different perspectives of interpretation, so the target for current analysis turns out to be less detectable” (46). Rather, the contributors touch on various aspects of Kuhn’s philosophy, variously interpreted — and as such, multiple Kuhnian images emerge as the volume unfolds. That’s just as it should be. In fact, if the volume had propped up some caricature of Kuhn’s views as the Kuhnian image of science, it would have done a disservice both to Kuhn and to his many interpreters.

One wonders, too, whether the so-called Kuhnian image of science is really so broadly endorsed as to be the potential subject of (echoing Kuhn’s own phrase) a ‘decisive transformation’. In his introduction, Moti Mizrahi emphasizes Kuhn’s undeniable influence. Kuhn has, Mizrahi points out, literally tens of thousands of citations; numerous books, articles, and journal issues devoted to his work; and a lasting legacy in the language of academic and public discourse. While all of this signals influence, it’s clearly no indication of agreement.

To be fair, Mizrahi acknowledges the “fair share” of Kuhn critics (2). Nevertheless, if the prospect of decisively transforming the Kuhnian image of science were to be a serious prospect, then the image would have to be widely accepted and enjoy a lasting relevance. However, Argamakova again rightly emphasizes that Kuhn’s philosophy of science “never fully captured the intellectual market” (45) and “could not be less attractive for so many minds!” (47). Moreover, in a remarkable passage in his contribution, Howard Sankey describes a central component of the so-called Kuhnian image of science as as an old battlefield and a dead issue:

Returning to the topic from the perspective of the contemporary scene in the philosophy of science is like visiting a battlefield from a forgotten war. The positions of the warring sides may still be made out. But the battlefield is grown over with grass. One may find evidence of the fighting that once took place, perhaps bullet marks or shell holes. But the fighting ceased long ago. The battle is a thing of the past.

The problem of incommensurability is no longer a live issue. The present chapter has taken the form of a post-mortem examination of a once hotly debated but now largely forgotten problem from an earlier period in the philosophy of science. (87)

If the same holds true for the rest of the Kuhnian image (or images), then the volume isn’t exactly timely.

But dead philosophical issues don’t always stay dead. Or rather, we’re not always right to pronounce them dead. In 1984, Arthur Fine famously proclaimed scientific realism “well and truly dead” (in The Natural Ontological Attitude), and clearly he was quite wrong. At any rate, we may find interest in an issue, dead or not, and there is certainly much of it to be found in this volume. I have been asked to focus my comments on the second half of the book. As such, I will discuss the Introduction, as well as Parts I and II in brief, then I will discuss parts III and IV at greater length.

On the Incommensurable

In his Introduction, Mizrahi argues that, far from initiating a historical turn in the philosophy of science, Kuhn was ‘patient zero’ for anecdotiasis — “the tendency to use cherry-picked anecdotes or case studies… to support general claims (about the nature of science as a whole)” (3). Mizrahi argues that anecdotiasis is pervasive, since significant proportions of articles in the PhilSci-Archive and in leading philosophy of science journals contain the phrase ‘case study’.

But neither using the phrase ‘case study’ nor doing case studies is inherently or self-evidently problematic. Case studies can be interesting, informative, and evidential. Of course the challenges are not to ignore relevant problem cases, not to generalize hastily, and not to assign undue evidential weight to them. But if we are to suppose that all or most philosophers of science who use case studies fail to meet those challenges, we will need a substantial body of evidence.

Part I begins with Mizrahi’s contribution, which the successive contributions all engage. In it, he defines taxonomic incommensurability as conceptual incompatibility between new and old theories. Against those who claim that Kuhn ‘discovered’ incommensurability, Mizrahi argues that there are no good deductive or inductive arguments for taxonomic incommensurability. He cites just two authors, Eric Oberheim and Paul Hoyningen-Huene, who use the language of discovery to characterize incommensurability. As such, it isn’t clear that the assumption Mizrahi takes pains to reject is particularly widespread.

Nevertheless, even if everyone universally agreed that there are no legitimate cases of incommensurability, it would still be useful to know why they’d be justified in so thinking. So the work that Mizrahi does to establish his conclusion is valuable. He shows the dubious sorts of assumptions that arguments for the taxonomic incommensurability thesis would hang on.

Argamakova’s helpful and clear contribution lays out three general types of critique with respect to Kuhn’s view of scientific development — ambiguity, inaccuracy, and limitation — and raises, if tentatively, concerns about Kuhn’s universalist ambitions. She might have been more explicit with respect to the force and scope of her comments on universalism — in particular, whether she sees the flaws in Kuhn’s theory as ultimately stemming from his attempts at universal generalizations, and to what extent her concerns extend beyond Kuhn to general philosophy of science.

Seungbae Park advances several arguments in response to Kuhn’s incommensurability thesis. One such argument takes up Kuhn’s analogy in The Structure of Scientific Revolutions (henceforth Structure) between the development of science and the evolution of organisms. Park suggests that in drawing the analogy, Kuhn illicitly assumes the truth of evolutionary theory. He doesn’t consider that Kuhn could adopt the language of a paradigm (for the purposes of drawing an analogy, no less!) without committing to the literal truth of that paradigm.

Park also claims that “it is self-defeating for Kuhn to invoke a scientific theory to give an account of science that discredits scientific claims” (66), when it’s not clear that the analogy is at all integral to Kuhn’s account. Kuhn could, for instance, have ascribed the same characteristics to theory change without referring to evolutionary theory at all.

Sankey’s illuminating contribution fills in the interpretive background on incommensurability — the semantic version of Kuhn’s incommensurability thesis, in particular. He objects, with Mizrahi, to the language of discovery used by Oberheim and Hoyningen-Huene with respect to incommensurability. He argues, convincingly, that the purported paradigm shift that allowed Kuhn to finally comprehend Aristotle’s physics isn’t a case of incommensurability, but rather of comprehension after an initial failure to understand. While this doesn’t establish his conclusion that no cases of incommensurability have been established (76), it does show that a historically significant purported case is not genuine.

Vasso Kindi fills in some historical detail regarding the positivist image of science that Kuhn sought to replace and the “stereotypical” image attributed to him (96). She argues that Kuhn’s critics (including by implication several of her co-contributors) frequently attack a strawman — that, notwithstanding Kuhn’s avowed deference to history, the Kuhnian image of science is not meant to be a historical representation, and so doesn’t need to be supported by historical evidence. It is, rather, a “a philosophical model that was used to challenge an ideal image of science” (95).

Finally, Lydia Patton emphasizes the practical dimension of Kuhn’s conception of paradigms in Structure. It ought to be uncontroversial that on Kuhn’s early characterization a paradigm is not merely a theory, but a series of epistemic, evaluative, and methodological practices, too. But Patton argues that there has been too strong a semantic tendency in the treatment of Kuhnian paradigms (including by the later Kuhn himself). She argues for the greater interest and value of a practical lens on Kuhn’s project for the purposes of understanding and explaining science.

Vectors of Glory

Andrew Aberdein’s contribution deals with the longstanding and intriguing question of whether there are revolutions in mathematics. He imports to that discussion distinctions he drew in previous work among so-called glorious, inglorious, and paraglorious revolutions, in which, respectively, key components of the theory are preserved, lost, or preserved with new additions. Key components are, he says, “at least all components without which the theory could not be articulated” (136).

He discusses several examples of key shifts in mathematical theory and practice that putatively exemplify certain of these classes of revolution. The strength of the paper is its fascinating examples, particularly the example of Inter-Universal Teichmüller theory, which, Aberdein explains, introduces such novel techniques and concepts that some leading mathematicians say its proofs read as if they were “from the future, or from outer space” (145).

Aberdein doesn’t falsely advertise his thesis. He acknowledges that “it is not easy to determine whether a given episode is revolutionary” (140), and claims only that certain shifts “may be understood” as revolutionary (149) — that the cases he offers are putative mathematical revolutions. As to how we should go about identifying putative mathematical revolutions, Aberdein suggests we look directly for conceptual shifts (or ‘sorites-like’ sequences of shifts) in which key components have been lost or gained.

A fuller discussion of these diagnostics is needed, since the judgment of whether there are revolutions (genuine or putative) in mathematics will hang largely on diagnostics such as these. Is any key conceptual shift sufficient? If so, have we really captured the spirit of Kuhn’s view, given that Kuhn seems to ascribe a certain momentousness to revolutions? If the conceptual shift has to be substantial, how substantial, and how should we gauge its substantiality? Without some principled, non-arbitrary, and non-question-begging standards for what counts as a revolution, we cannot hope to give a serious answer to the question of whether there are, even putatively, revolutions in mathematics.

The paper would also have benefited from a more explicit discussion of what a mathematical paradigm is in the first place, especially as compared to a scientific one. We can infer from Aberdein’s examples that conceptions of number, ratio, proportion, as well as systems of conjecture and mathematical techniques belong to mathematical paradigms — but explicit comment on this would have been beneficial.

Moreover, Aberdein sees an affinity between mathematics and science, commenting toward the end of the paper that the methodology of mathematics is not so different from that of science, and that “the story we tell about revolutions [should] hold for both science and mathematics” (149). These are loaded comments needing further elaboration.

The Evolution of Thomas Kuhn

In his contribution, James Marcum argues that Kuhn’s later evolutionary view is more relevant to current philosophy of science (being ‘pluralistic and perspectival’) than his earlier revolutionary one. On Kuhn’s later evolutionary view, Marcum explains, scientific change proceeds via “smaller evolutionary specialization or speciation” (155), with a “gradual emergence of a specialty’s practice and knowledge” (159). On this view, scientific development consists in “small incremental changes of belief” rather than “the upheaval of world-shattering revolutions” (159).

Marcum uses the emergence of bacteriology, virology, and retrovirology to illustrate the strengths and weaknesses of Kuhn’s evolutionary view. Its main strength, he says, is that it illuminates the development of and relationships among these sorts of scientific specialties; its weakness is that it ascribes a single tempo — Darwinian gradualism — and a single mode — speciation — to the evolution of science. Marcum adopts George Gaylord Simpson’s “richer and more textured approach” (165), which distinguishes several tempos and modes. Since these refinements better enable Kuhn’s view to handle a range of cases, they are certainly valuable.

According to Marcum, current philosophy of science is ‘pluralistic and perspectival’ in its recognition that different sciences face different philosophical issues and in its inclusion of perspectives from outside the logico-analytic tradition, such as continental, pragmatist, and feminist perspectives (166). Marcum seems right to characterize current philosophy of science as pluralistic, given the move away from general philosophy of science to more specialized branches.

If this pluralism is to be embraced, one might wonder what role (if any) remains for general philosophy of science. Marcum makes the interesting suggestion that a general image of science, like Kuhn’s evolutionary image, while respecting our contemporary pluralistic stance, can at the same time offer “a type of unity among the sciences, not in terms of reducing them to one science, but rather with respect to mapping the conceptual relationships among them” (169).

One of Marcum’s central aims is to show that incommensurability plays a key explanatory role in a refined version of Kuhn’s evolutionary image of science. The role of incommensurability on this view is to account for scientific speciation. However, Marcum shows only that we can characterize scientific speciation in terms of incommensurability, without clearly establishing the explanatory payoff of so doing. He does not succeed in showing that incommensurability has a particularly enriching explanatory role, much less that incommensurability is “critical for conceptual evolution within the sciences” or “an essential component of… the growth of science” (168).

All a Metaphor?

Barbara Gabriella Renzi and Giulio Napolitano frame their contribution with a discussion of competing accounts of the nature and role of metaphor. They avow the commonly accepted view that metaphors are not merely linguistic, but cognitive, and that they are ubiquitous. They claim, I would think uncontroversially, that metaphors shape how individuals approach and reason about complex issues. They also discuss historical empiricist attitudes toward metaphor, competing views on the role of models and metaphor in science, and later, the potential role of metaphor in social domination.

Renzi and Napolitano also address Kuhn’s use of the metaphor of Darwinian evolution to characterize scientific change. They suggest that an apter metaphor for scientific change can be made of the obsolete orthogenetic hypothesis, according to which “variations are not random but directed by forces regulated and ultimately directed by the internal constitution of the organism, which responds to environmental stimuli” (184).

The orthogenetic metaphor is a better fit for scientific change, they argue, because the emergence of new ideas in science is not random, but driven by “arguments and debates… specific needs of a scientist or group of scientists who have been seeking a solution to a problem” (184).

The orthogenetic metaphor effectively highlights a drawback of the Darwinian metaphor that might otherwise be overlooked, and deserves further attention. The space devoted to discussing metaphor in the abstract contributes little to the paper, beyond prescriptions to take metaphor seriously and approach it with caution. Much of that space would have been better devoted to using historical examples to compare Kuhn’s Darwinian metaphor to the proposed orthogenetic alternative, to make concrete the fruitfulness of the latter, and to flesh out the specific kinds of internal and external pressures that Renzi and Napolitano see as important drivers of scientific change.

Methodological Contextualism

Darrell Rowbottom offers a summary and several criticisms of what he sees as Kuhn’s early-middle period image of science. By way of criticism, he points out that it isn’t clear how to individuate disciplinary matrices in a way that preserves a clear distinction between normal and extraordinary science, or ensures that what Kuhn calls ‘normal science’ is really the norm. Moreover, in linking the descriptive and normative components of his view, Kuhn implausibly assumes that mature science is optimal.

Rowbottom suggests a replacement image of science he calls methodological contextualism (developed more fully in previous work). Methodological contextualism identifies several roles — puzzle-solving, critical, and imaginative — which scientific practitioners fulfill to varying degrees and in varying combinations. The ideal balance of these roles depends on contextual factors, including the scientists available and the state of science (200).

The novel question Rowbottom considers in this paper is: how could piecemeal change in science be rational from the perspective of methodological contextualism? I have difficulty seeing why this is even a prima facie problem for Rowbottom’s view, since puzzle-solving, critical and imaginative activities are clearly consonant with piecemeal change. I suppose it is because the view retains some of Kuhn’s machinery, including his notion of a disciplinary matrix.

At any rate, Rowbottom suggests that scientists may work within a partial disciplinary matrix, or a set of partially overlapping ones. He also makes the intriguing claim that “scientists might allow inconsistency at the global level, and even welcome it as a better alternative than a consistent system with less puzzle-solving power” (202). One might object that Kuhn’s incommensurability thesis seems to block the overlapping matrix move, but Rowbottom proclaims that the falsity of Kuhn’s incommensurability thesis follows “as a consequence of the way that piecemeal change can occur” (201). One person’s modus ponens is another’s modus tollens, as they say.

A Digestible Kuhn

The brevity of the contributions makes them eminently digestible and good potential additions to course syllabi at a range of levels; on the other hand, it means that some of the most provocative and topical themes of the book — such as the epistemic and methodological status of generalizations about science and the role of general philosophy of science in contemporary philosophy — don’t get the full development they deserve. The volume raises more questions than it satisfactorily addresses, but several of them bring renewed relevance and freshness to Kuhnian philosophy of science and ought to direct its future course.

Contact details: amandabryant@trentu.ca

References

Mizrahi, Moti (Ed.) The Kuhnian Image of Science: Time for a Decisive Transformation? Lanham, MD: Rowman & Littlefield, 2018.

Author Information: Markus Arnold, University of Klagenfurt, markus.arnold@aau.at

Arnold, Markus. “Is There Anything Wrong with Thomas Kuhn?.” Social Epistemology Review and Reply Collective 7, no. 5 (2018): 42-47.

The pdf of the article gives specific page references: Shortlink: https://wp.me/p1Bfg0-3Xs

Image by Rob Thomas via Flickr / Creative Commons

 

Twenty-two years after his death, Thomas Kuhn’s work is still able to provoke lively debates, where arguments are exchanged and competing interpretations of his theories are advanced. The Kuhnian Image of Science is a good example, as the book brings together ten scholars in a debate for and against Thomas Kuhn’s legacy. The question, the edited volume raises, is straightforward:

“Does the Kuhnian image of science provide an adequate model of scientific change? If we abandon the Kuhnian picture of revolutionary change and incommensurability […], what consequences would follow from that vis-à-vis our understanding of science as a social, epistemic endeavor?” (7)

In this review I will concentrate on the first two parts of the book, i.e. and in particular on the debate between those who are questioning (Mizrahi, Argamakova, Park, Sankey), and those who are defending Kuhn (Kindi, Patton), since their arguments are closely related. Therefore, I will discuss some of their major arguments in topological order.

Debating Kuhn’s Evidence

The editor Moti Mizrahi opens the debate in his introduction with a confrontational thesis: Kuhn, in his opinion, is responsible for an “infectious disease” (3), for “the pathological state of the field of philosophy of science in general, and general philosophy of science in particular” (3). Kuhn’s vice is his use of case studies (from the history of science) as arguments, although – according to Moti Mizrahi – they are nothing more than “anecdotal evidence” leading to “hasty generalizations” and “fallacious inductive reasoning” (6).

Hearing the trumpets of the troops ready to battle one is eager to learn how to do it right: How the standards of inductive reasoning within philosophy of science are re-erected. Yet, anticipating one of the results of this review, the “inductive reasoning” intended to refute Kuhn’s incommensurability thesis (found in the first part of the book) is actually its weakest part.

However, to understand the intricacy of this difficult task, we have to recognize, that it is not easy to support or falsify inductively a complex theory of science. Broadly speaking, in Kuhn’s account we should empirically observe sciences displaying at least four different manifestations: (1.) “proto-science” in the pre-paradigm phase, when there is no general consensus about theories, methods and standards, (2.) “normal science”, when scientists are most of the time focused on preserving, but also adapting existing paradigms to new problems and new scientific fields, (3.) sciences in a state of crisis, when more and more “anomalies” occur, which defy explanations in conformity with established procedures, and finally (4.) on rare occasions a “revolutionary” state, when different paradigms compete with each other and scientific theories based on one paradigm are to some extent “incommensurable” with those based on another paradigm.

There are good reasons to suppose that Kuhn’s somehow schematic and ideal-typical description of scientific change is too simple compared with the complexities shown by many historical case studies. Nevertheless, the counter-arguments under consideration brought forward against his model seem, paradoxically, to underestimate the complexity of Kuhn’s claims. For example, in Kuhn’s Incommensurability Thesis Mizrahi decides to discuss scientific change only in general.  He claims that Kuhn argues:

“Scientific change (specifically, revolutionary change) is characterized by taxonomic incommensurability.” (33)

The compounded phrase “[s]cientific change (specifically, revolutionary change)” indicates that, in Mizrahi’s interpretation, for Kuhn not all scientific change is per definition revolutionary. But then arguments against Kuhn’s theory should consider at least two kinds of scientific change separately: revolutionary change and those (commensurable) non-revolutionary scientific changes within “normal science.”

Keeping in mind that for Kuhn theory change is possible to a certain degree within normal science (only changing paradigms must be averted)[1], it is not clear, why Kuhn’s “image of science” should be dismissed because “as far as theory change is concerned” taxonomic incommensurability “is the exception rather than the rule” (38).[2]

Or another example, in Can Kuhn’s Taxonomic Incommensurability Be an Image of Science? where Seungbae Park comes to the conclusion that historical evidence shows that “scientific revolution is rare, taxonomic incommensurability is rare, and taxonomic commensurability is common” (61). It is, for similar reasons, unclear why this conclusion should not be commensurable with Kuhn’s description of normal science, since Kuhn claimed that normal science is common and scientific revolutions are rare.

However, this is not Park’s last argument about scientific change: He asks furthermore if we should not distinguish between the distant scientific past, when scientific revolutions were more common, and the recent past, “since most recent past theories have been stable, most present theories will also be stable” (70). Kuhn’s theory of revolutionary paradigm change is, in his opinion, first of all not appropriate for understanding the development of contemporary and future science.

Incommensurable Paradigms of Language?

After a discussion of the critical reception of Thomas Kuhn’s and Paul Feyerabend’s work and the objections raised against their claim that scientific theories or paradigms are incommensurable, Howard Sankey admits in The Demise of the Incommensurability Thesis that:

“the idea that there is conceptual change in science now seems commonplace. But the much-feared consequences, such as incomparability, communication breakdown, and irrationality now all seem to have been greatly overblown.” (88)

Prima facie it seems like a self-critical admission of an inappropriate former reception of Kuhn’s theory of incommensurability, especially by those philosophers of science who tried to fight “irrationality” with the means of referential semantics. However, Sankey seems to think that the dissolution of the exaggerated accusations of Kuhn’s critics somehow makes now Kuhn’s theory of incommensurability obsolete. Hence, Sankey can summarize:

“with the demise of the incommensurability thesis, the debate about scientific realism is free to proceed in a manner that is unencumbered by the semantic concerns about wholesale referential discontinuity that were prompted by the incommensurability thesis.” (88)

For Sankey, Kuhn’s concept of incommensurability is dead (87). He seems to blame Kuhn for the misguided interpretations of his opponents. It comes down to the argument: if it’s not possible to criticize Kuhn’s concept of incommensurability as “irrational” anymore, then Kuhn’s concept cannot claim any relevance for future discussions.

However, more importantly: These arguments against Kuhn are based on referential semantics, i.e. semantic concerns about referential continuity. Hence, what their objections against Kuhn’s incommensurability theory inadvertently show is, paradoxically, the incommensurability of competing paradigms of language. This becomes apparent, for example, when Mizrahi criticizes Kuhn’s sometimes-vague formulations, especially in his early Structure. Mizrahi refers to statements where Kuhn argues with caution:

“The normal-scientific tradition that emerges from a scientific revolution is not only incompatible but often [sic] actually incommensurable with that which has gone before.” (Kuhn 1996, 103)

Formulations such as this prompt Mizrahi to ask: If taxonomic incommensurability (TI):

“is not a general thesis about the nature of scientific change, then what is its explanatory value? How does (TI) help us in terms of understanding the nature of scientific change? On most accounts of explanation, an explanans must have some degree of generality […] But if (TI) has no degree of generality, then it is difficult to see what the explanatory value of (TI) is.” (37)

Kuhn could have responded that his arguments in Structure are explicitly based on Wittgenstein’s theory of “language games” with its central concept of “family resemblance”, which by definition does not allow the assumption that there are unambiguous conceptual boundaries and a distinguishing characteristic, which all or even most of the phenomena aligned by a concept have in common.[3]

Indeed, understanding Wittgenstein’s concept of “family resemblance” is central to understand Kuhn’s theory of “paradigms”, “paradigm shifts”, and the meaning of “incommensurability”.[4] Yet, it is possible to come to similar conclusions without referring to the late Wittgenstein: For example, Alexandra Argamakova despite of her negative evaluation of many of Kuhn’s arguments, unlike Mizrahi, is closer on this issue to Kuhn where she claims in Modeling Scientific Development: “distinct breakthroughs in science can be marked as revolutions, but no universal system of criteria for such appraisal can be formulated in a normative philosophical manner” (54).

Defending Kuhn’s Epistemology

In two of the book’s most interesting discussions of Kuhn’s epistemology, Vasso Kandi’s The Kuhnian Straw Man and Lydia Patton’s Kuhn, Pedagogy, and Practice, the allegation that Kuhn developed his theory on the basis of selected historical cases is refuted. Furthermore, Kindi, defending the innovative character of Kuhn’s work asks “for a more faithful reading”:

“Kuhn’s new image of science, which is actually a mosaic of different traditions, was not put together by generalizing from instances; it emerged once attention was drawn to what makes scientific practice possible, namely paradigms and what follows from them (normal science, anomalies, revolutions). In accordance with Kuhn’s own understanding of scientific revolutions, his revolution in the perception of science did not have to summon new facts or make new discoveries; it only needed a new perspective.” (104)

While Lydia Patton forcefully argues that:

“Kuhn’s original work did not restrict ‘paradigm’ to ‘theoretical framework’, nor did he restrict the perspective of scientific practice to the content of propositions with a truth-value. And it is mainly because Kuhn’s arguments in Structure are outside the semantic view, and focus instead on the practice of science, that they are interesting and fresh.” (124)

Both, Patton and Kindi, offer a close reading of Kuhn’s work, trying to give new perspectives on some of the more contested concepts in Kuhn’s epistemology.

The Social in Social Epistemology

One explicit aim of this edited volume is, as the editor asserts, to outline what consequences would follow from this debate for “our understanding of science as a social, epistemic endeavor” (7). But for this reviewer it is not obvious how the strong emphasis on discounting Kuhn’s incommensurability thesis in the first part of the book should lead to a better understanding of science as a social practice.

Kuhn’s theory of incommensurability of competing paradigms is precisely the point within his epistemology where value judgments and social decisions come into play. While traditionally those who defended the “progress of science” (cf. Sankey: 87) against what they saw as Kuhn’s “anti-realist” position were often those who wanted to defend the objectivity of science by excluding “external” influences, like the “social” and the political, from the scientific core.[5]

It is therefore important when talking about incommensurability of paradigms, and the possibility of a “communication breakdown”, to distinguish between two distinct meanings: (a) the impossibility to communicate at all because people do not understand each other’s language or paradigms and (b) the decision after a long and futile debate to end any further communication as a waste of time since no agreement can be reached. It is this second meaning, describing a social phenomenon, which is very common in science. Sankey argues against the first meaning when he declares:

“Given that scientists are able to understand what is said by theories whose terms are untranslatable into their own, no insuperable obstacle stands in the way of full communication between the ‘proponents of competing paradigms.’” (87)

While Sankey “wonders what all the fuss was about” (87), he has only shown (in accordance with Kuhn: cf. Kuhn 2000) that in theory full communication may be possible, but not that communication breakdowns are not common between scientists working with different paradigms. While on a theoretical level these workday problems to communicate may seem, for some philosophers of science, trivial. However, on the social level for working scientists, such communication breakdowns are often not only the reason for fraught relations between colleagues, but also for disciplinary segmentation and sometimes for re-drawing boundaries of scientific disciplines.

Perhaps it is no coincidence that in this volume those who discuss social as well as epistemological practices of scientists are not those who criticize incommensurability from a semantic point of view. Social and epistemological practices are considered in one way or the other by those defending Kuhn, like Kindi and Patton, and those whose main concern is to revise certain aspects of Kuhn’s image of science, like James A. Marcum, Barbara Gabriella Renzi & Giulio Napolitano, and David P. Rowbottom.

However, as I confined this review to the discussion of the first six articles I can only point out that the four remaining articles go beyond the topics discussed thus far and would deserve not only attentive readers but also a thorough discussion. They analyze, for example, scientific revolutions in mathematics (Andrew Aberdein), the role of evolutionary metaphors (Gabriella Renzi/Napolitano, Marcum) and of methodological contextualism in the philosophy of science (Rowbottom). Hence, although this edited volume has some weaknesses, there are several contributions, which open new avenues of thought about Kuhn, and are worth reading for those interested in Kuhn and in philosophy of science.

Contact details: markus.arnold@aau.at

References

Kuhn, Thomas S. The Structure of Scientific Revolutions. Chicago: University of Chicago Press, 1996.

Kuhn, Thomas S. „Commensurability, Comparability, Communicability,“ In Thomas S. Kuhn, Thomas S. The Road Since Structure. Philosophical Essays, 1970-1993, 33-57. Chicago: University of Chicago Press, 2000.

Mizrahi, Moti (Ed.) The Kuhnian Image of Science. Time for a Decisive Transformation? Lanham, MD: Rowman & Littlefield, 2018.

Wittgenstein, Ludwig. Philosophische Untersuchungen / Philosophical Investigations. Transl. by G. E. M. Anscombe, P. M. S. Hacker and Joachim Schulte. Oxford: Wiley-Blackwell, 2009.

[1] Kuhn discusses this type of theory change, for example, as divergent „articulation(s) of the paradigm“ (Kuhn 1996, 83; cf. Kuhn 1996, 23, 29-34, 122).

[2] Always on condition that, like Moti Mizrahi in this argument, we accept the concept of „incommensurability“ as defined by referential semantics. On some problems with „referential continuity“ as main argument against incommensurability see further below.

[3] “Instead of pointing out something common to all […], I’m saying that these phenomena have no one thing in common in virtue of which we use the same word for all – but there are many different kinds of affinity between them“ (Wittgenstein 2009, § 65) “I can think of no better expression to characterize these similarities than “family resemblances”; for the various resemblances between members of a family – build, features, colour of eyes, gait, temperament, and so on and so forth – overlap and criss-cross in the same way.” (§ 67)

[4] Cf. Kuhn 1996, Ch. 5. Later, Kuhn argued explicitly against referential semantics but then on the basis of a hermeneutic (holistic) theory of language (Kuhn 2000; but cf. Kuhn 1996, 128f.).

[5] This, despite the fact that Kuhn himself tried to restrict the relevant „social“ factors in his epistemology to social dynamics within scientific communities.

Author Information: Stephen Turner, University of South Florida, turner@usf.edu

Turner, Stephen. “Fuller’s roter Faden.” Social Epistemology Review and Reply Collective 7, no. 5 (2018): 25-29.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3WX

Art by William Blake, depicting the creation of reality.
Image via AJC1 via Flickr / Creative Commons

The Germans have a notion of “research intention,” by which they mean the underlying aim of an author’s work as revealed over its whole trajectory. Francis Remedios and Val Dusek have provided, if not an account itself, the material for an account of Steve Fuller’s research intention, or as they put it the “thread” that runs through his work.

These “intentions” are not something that is apparent to the authors themselves, which is part of the point: at the start of their intellectual journey they are working out a path which leads they know not where, but which can be seen as a path with an identifiable beginning and end retrospectively. We are now at a point where we can say something about this path in the case of Fuller. We can also see the ways in which various Leitmotifs, corollaries, and persistent themes fit with the basic research intention, and see why Fuller pursued different topics at different times.

A Continuity of Many Changes

The ur-source for Fuller’s thought is his first book, Social Epistemology. On the surface, this book seems alien to the later work, so much so that one can think of Fuller as having a turn. But seen in terms of an underlying research intention, and indeed in Fuller’s own self-explications included in this text, this is not the case: the later work is a natural development, almost an entailment, of the earlier work, properly understood.

The core of the earlier work was the idea of constructing a genuine epistemology, in the sense of a kind of normative account of scientific knowledge, out of “social” considerations and especially social constructivism, which at the time was considered to be either descriptive or anti-epistemological, or both. For Fuller, this goal meant that the normative content would at least include, or be dominated by, the “social” part of epistemology, considerations of the norms of a community, norms which could be changed, which is to say made into a matter of “policy.”

This leap to community policies leads directly to a set of considerations that are corollaries to Fuller’s long-term project. We need an account of what the “policy” options are, and a way to choose between them. Fuller was trained at a time when there was a lingering controversy over this topic: the conflict between Kuhn and the Popperians. Kuhn represented a kind of consensus driven authoritarianism. For him it was right and necessary for science to be organized around ungroundable premises that enabled science to be turned into puzzle-solving, rather than insoluble disputes over fundamentals. These occurred, and produced new ungroundable consensual premises, at the rare moments of scientific revolutions.

Progress was possible through these revolutions, but our normal notions of progress were suspended during the revolutions and applied only to the normal puzzle-solving phase of science. Popperianism, on the contrary, ascribed progress to a process of conjecture and refutation in which ever broader theories developed to account for the failures of previous conjectures, in an unending process.

Kuhnianism, in the lens of Fuller’s project in Social Epistemology, was itself a kind of normative epistemology, which said “don’t dispute fundamentals until the sad day comes when one must.” Fuller’s instincts were always with Popper on this point: authoritarian consensus has no place in science for either of them. But Fuller provided a tertium quid, which had the effect of upending the whole conflict. He took over the idea of the social construction of reality and gave it a normative and collective or policy interpretation. We make knowledge. There is no knowledge that we do not create.

The creation is a “social” activity, as the social constructivists claimed. But this social itself needed to be governed by a sense of responsibility for these acts of creation, and because they were social, this meant by a “policy.” What this policy should be was not clear: no one had connected the notion of construction to the notion of responsibility in this way. But it was a clear implication of the idea of knowledge as a product of making. Making implies a responsibility for the consequences of making.

Dangers of Acknowledging Our Making

This was a step that few people were willing to take. Traditional epistemology was passive. Theory choice was choice between the theories that were presented to the passive chooser. The choices could be made on purely epistemic grounds. There was no consideration of responsibility, because the choices were an end point, a matter of scientific aesthetics, with no further consequences. Fuller, as Remedios and Dusek point out, rejects this passivity, a rejection that grows directly out of his appropriation of constructivism.

From a “making” or active epistemic perspective, Kuhnianism is an abdication of responsibility, and a policy of passivity. But Fuller also sees that overcoming the passivity Kuhn describes as the normal state of science, requires an alternative policy, which enables the knowledge that is in fact “made” but which is presented as given, to be challenged. This is a condition of acknowledging responsibility for what is made.

There is, however, an oddity in talking about responsibility in relation to collective knowledge producing, which arises because we don’t know in advance where the project of knowledge production will lead. I think of this on analogy to the debate between Malthus and Marx. If one accepts the static assumptions of Malthus, his predictions are valid: Marx made the productivist argument that with every newborn mouth came two hands. He would have been better to argue that with every mouth came a knowledge making brain, because improvements in food production technology enabled the support of much larger populations, more technology, and so forth—something Malthus did not consider and indeed could not have. That knowledge was in the future.

Fuller’s alternative grasps this point: utilitarian considerations from present static assumptions can’t provide a basis for thinking about responsibility or policy. We need to let knowledge production proceed regardless of what we think are the consequences, which is necessarily thinking based on static assumptions about knowledge itself. Put differently, we need to value knowledge in itself, because our future is itself made through the making of knowledge.

“Making” or “constructing” is more than a cute metaphor. Fuller shows that there is a tradition in science itself of thinking about design, both in the sense of making new things as a form of discovery, and in the sense of reverse engineering that which exists in order to see how it works. This leads him to the controversial waters of intelligent design, in which the world itself is understood as, at least potentially, the product of design. It also takes us to some metaphysics about humans, human agency, and the social character of human agency.

One can separate some of these considerations from Fuller’s larger project, but they are natural concomitants, and they resolve some basic issues with the original project. The project of constructivism requires a philosophical anthropology. Fuller provides this with an account of the special character of human agency: as knowledge maker humans are God-like or participating in the mind of God. If there is a God, a super-agent, it will also be a maker and knowledge maker, not in the passive but in the active sense. In participating in the mind of God, we participate in this making.

“Shall We Not Ourselves Have to Become Gods?”

This picture has further implications: if we are already God-like in this respect, we can remake ourselves in God-like ways. To renounce these powers is as much of a choice as using them. But it is difficult for the renouncers to draw a line on what to renounce. Just transhumanism? Or race-related research? Or what else? Fuller rejects renunciation of the pursuit of knowledge and the pursuit of making the world. The issue is the same as the issue between Marx and Malthus. The renouncers base their renunciation on static models. They estimate risks on the basis of what is and what is known now. But these are both things that we can change. This is why Fuller proposes a “pro-actionary” rather than a precautionary stance and supports underwriting risk-taking in the pursuit of scientific advance.

There is, however, a problem with the “social” and policy aspect of scientific advance. On the one hand, science benefits humankind. On the other, it is an elite, even a form of Gnosticism. Fuller’s democratic impulse resists this. But his desire for the full use of human power implies a special role for scientists in remaking humanity and making the decisions that go into this project. This takes us right back to the original impulse for social epistemology: the creation of policy for the creation of knowledge.

This project is inevitably confronted with the Malthus problem: we have to make decisions about the future now, on the basis of static assumptions we have no real alternative to. At best we can hint at future possibilities which will be revealed by future science, and hope that they will work out. As Remedios and Dusek note, Fuller is consistently on the side of expanding human knowledge and power, for risk-taking, and is optimistic about the world that would be created through these powers. He is also highly sensitive to the problem of static assumptions: our utilities will not be the utilities of the creatures of the future we create through science.

What Fuller has done is to create a full-fledged alternative to the conventional wisdom about the science society relation and the present way of handling risk. The standard view is represented by Philip Kitcher: it wishes to guide knowledge in ways that reflect the values we should have, which includes the suppression of certain kinds of knowledge by scientists acting paternalistically on behalf of society.

This is a rigidly Malthusian way of thinking: the values (in this case a particular kind of egalitarianism that doesn’t include epistemic equality with scientists) are fixed, the scientists ideas of the negative consequences of something like research on “racial” differences are taken to be valid, and policy should be made in accordance with the same suppression of knowledge. Risk aversion, especially in response to certain values, becomes the guiding “policy” of science.

Fuller’s alternative preserves some basic intuitions: that science advances by risk taking, and by sometimes failing, in the manner of Popper’s conjectures and refutations. This requires the management of science, but management that ensures openness in science, supports innovation, and now and then supports concerted efforts to challenge consensuses. It also requires us to bracket our static assumptions about values, limits, risks, and so forth, not so much to ignore these things but to relativize them to the present, so that we can leave open the future. The conventional view trades heavily on the problem of values, and the potential conflicts between epistemic values and other kinds of values. Fuller sees this as a problem of thinking in terms of the present: in the long run these conflicts vanish.

This end point explains some of the apparent oddities of Fuller’s enthusiasms and dislikes. He prefers the Logical Positivists to the model-oriented philosophy of science of the present: laws are genuinely universal; models are built by assuming present knowledge and share the problems with Malthus. He is skeptical about science done to support policy, for the same reason. And he is skeptical about ecologism as well, which is deeply committed to acting on static assumptions.

The Rewards of the Test

Fuller’s work stands the test of reflexivity: he is as committed to challenging consensuses and taking risks as he exhorts others to be. And for the most part, it works: it is an old Popperian point that only through comparison with strong alternatives that a theory can be tested; otherwise it will simply pile up inductive support, blind to what it is failing to account for. But as Fuller would note, there is another issue of reflexivity here, and it comes at the level of the organization of knowledge. To have conjectures and refutations one must have partners who respond. In the consensus driven world of professional philosophy today, this does not happen. And that is a tragedy. It also makes Fuller’s point: that the community of inquirers needs to be managed.

It is also a tragedy that there are not more Fullers. Constructing a comprehensive response to major issues and carrying it through many topics and many related issues, as people like John Dewey once did, is an arduous task, but a rewarding one. It is a mark of how much the “professionalization” of philosophy has done to alter the way philosophers think and write. This is a topic that is too large for a book review, but it is one that deserves serious reflection. Fuller raises the question by looking at science as a public good and asking how a university should be organized to maximize its value. Perhaps this makes sense for science, given that science is a money loser for universities, but at the same time its main claim on the public purse. For philosophy, we need to ask different questions. Perhaps the much talked about crisis of the humanities will bring about such a conversation. If it does, it is thinking like Fuller’s that will spark the discussion.

Contact details: turner@usf.edu

References

Remedios, Francis X., and Val Dusek. Knowing Humanity in the Social World. The Path of Steve Fuller’s Social Epistemology. New York: Palgrave MacMillan, 2018.

Author Information: Sheldon Richmond, Independent Researcher

Richmond, Sheldon. “Philosophy Out in the Cold.” Social Epistemology Review and Reply Collective 7, no. 4 (2018): 33-40.

The pdf of the article gives specific page references: Shortlink: https://wp.me/p1Bfg0-3Wi

Images of the benevolence of the United States Armed Forces.
Image by James Vaughn, via Flickr / Creative Commons

 

John McCumber’s book, The Philosophy Scare: The Politics of Reason in the Early Cold War, exists on four levels at the least. First: on the literal level, the book is about the special case of the UCLA philosophy department. How the philosophers, university administrators, and the State of California, hide away from and at the best, avoid, the McCarthy witch-hunt for communists. Also, on the literal level, the book is about how subliminally, the philosophy department unconsciously absorbs and thereby becomes subject to the ideology of the Red Scare.

(In place of the generic term, “ideology”, McCumber prefers the term paradigm borrowed from T.S. Kuhn, a term that is well known, widely used or misused term of choice when talking about internal pressures on general viewpoints. Also, in place of “ideology”, McCumber prefers the term dispositive, borrowed from Michel Foucault, a term lesser known that includes political-social external intellectual shapers).

Second: on the broader and extended literal level, the UCLA philosophy department case during the 50s and into the 60s is manifested by many if not all philosophy departments in the USA. Third: on a deeper level, just below the surface text of the book, there is an insinuation that Philosophy in America has barely moved away from the ideological iceberg of Cold War American anti-communism.

Fourth: on the deepest level, not at all articulated in the text, but presumed in the book is a commonly held axiom of intellectual life in and out of Academia. The axiom is that America hegemonically or mono-manically wields an ideology that molds all thought. The American ideology is enforced by the power conditions of the American Hegemony or American Empire. Moreover, we won’t fully realize the American ideology until the Empire tumbles—perhaps if the War against the Evil Empire (whichever one it happens to be at the moment) is lost.

(Though the End of X theme is not played in this book, the reality presumed in the book is that America is going strong continually recovering from fumbles, but still scoring touch-down after touch-down in spite of whatever fool happens to be the quarterback.)

An Argument of Classical Rational Choice

The core thesis of the text is concisely stated about mid-way through a very deliberately planned and structured book with three parts, two chapters to each part, balanced by an Introduction and an Epilogue. Not counting the customary Prologue, the book has 8 chapters. This is no accident—the text has the shape of a sine curve. The peak of the sine curve delineates the Rules and Premises of the American Intellect. The curve downward points to an alternative Philosophy existing always on the fringes of American Philosophy (and American Philosophy Departments) imported from Europe, Post-Modernism (often disguised in the updated version of old-fashioned American Pragmatism—found in the intellectually trend-setting works of Rorty. According to McCumber:

When Cold War philosophy became the operating philosophy of the United States, this [operating philosophy] was elevated into a new social gospel. Institutions that help individuals become powerful and wealthy (law schools, business schools) or stay that way (medical schools, hospitals) flourished; other public infra-structure, along with the environment was left to rot. Many of the problems faced by the United States in the early twenty-first century are testimony to the power of Cold War philosophy’s theory of mind. (p.112).

The theory of mind that McCumber refers to is in the philosophical extrapolations that McCumber develops (in the two chapters of Part 2, pp. 71 ff.) largely from the dilemmas of rational choice (in democratic-capitalist society). McCumber’s text concentrates on Kenneth Arrow’s dilemmas of rational choice that micro-economics or welfare economics employs to resolve the problems of wealth redistribution (in democratic-capitalist society).

However, McCumber’s text also fingers the von Neumann/Morgenstern mathematical game-theoretic approach to the dilemmas of rational choice (in democratic-capitalist society). The contextual qualifier of the phrase “in democratic-capitalist society” carries in it the unstated presumption that rational choice theory (RCT for short in the text)—explicitly extrapolated from Arrow’s micro-economics and mathematical game-theory—is the only and best intellectual weapon of defense against the intellectual fifth-column of anti-American communism. The best intellectual weapon is the ideology of a great and free American money-making machine composed of individuals buying (especially on credit) and consuming great quantities of goods—at the cheapest cost and produced at the cheapest cost with the cheapest resources by the cheapest and most efficient means of production.

All this making, selling-buying, consuming ever spinning of the economic-technological-industrial-military wheel turns regardless of down-stream costs to future generations, not only economically with the increasing American debt at all levels, but also environmentally with the increasing down-stream damage to all life and the planet—not merely unintended, but with imposed and willful disregard.

Into this pot of rational choice theory, was blended the philosophy found in Philosophy at UCLA, in specific in the work of the German-Jewish Berlin expat, Hans Reichenbach, especially in Reichenbach’s introductory philosophy textbook, The Rise of Scientific Philosophy, 1951. According to McCumber: “In the United States it [Reichenbach’s book] played an enormous role in establishing the various permutations of what would later be called analytical philosophy as the dominant dispositive in most American philosophy departments.” (pp. 56-7)

But what is its—the meld of analytic/scientific philosophy and rational choice theory– “cash-value” (a popular phrase in American vernacular, including the sophisticated academic jargon of both the pragmatist and analytic schools of philosophy)? What is the ultimate content of this meld of “scientific philosophy” or later known as “analytic philosophy” and rational choice theory? How does the meld function as an intellectual weapon of defense against communist ideology (and even today, against all anti-Americanism)? How does the meld act to discretely (or, in the punchy phrasing of McCumber, “stealthily”, form formal/academic philosophy and keep alternative philosophical schools, such as traditional pragmatism, continental philosophy, academic Marxism—as opposed to “vulgar” Marxism–and though not-mentioned in this text, Adorno/Marcuse critical philosophy at the fringes)?

Stealth Influence

Most importantly, in terms of what is taught and published—in the main–how does the meld (of scientific/analytic philosophy and rational choice theory) become adopted by the power structures of academia and even those power-structures in the world outside (as an intellectual superstructure or rationalization) that govern and inhabit politico-economic activity? The content of the meld that has become America’s intellectual defense weapon of choice is concisely articulated again at the very peak of the book’s textual sine curve in the concluding section of Chapter four, in terms of six premises (cited indirectly as under “some famous attacks” by philosophers at the edge of the cold war or post-cold war.)(cf. p. 112).

Summarizing the summary of the 6 premises in terms of 6 phrases, the six dogmas of analytic philosophy are as follows: 1. Unified Reason. 2. Knowledge=Prediction. 3. Prediction=Justified Knowledge vs Discovery/Intuition/Guessing. 4. Reason=Analytic Truth=Formal?Mathematical Logic. 5. Externalities are irrelevant (i.e. History, Culture). 6. Emotion (in argument or intellectual passion) is an Externality.

All the above 6 propositions/dogmas are part of the “stealthiness” of modern American Analytic Philosophy (not just the UCLA of the Cold War) but even today, even though those “dogmas” or in more discrete terminology, “axioms”, of American Cold War Philosophy are under attack by the intellectual descendants of the founders of American Cold War Philosophy (not just at UCLA, but almost everywhere—even outside America). Though today, the intellectual descendants of cold warrior philosophers hack away at the intellectual dogmas of their teachers (or their teachers’s teachers), the practices of stealthiness unconsciously remain in the new analytically dominated platforms for the production and distribution of the intellectual goods of philosophy.

We find out how, in the Epilogue (in the download flow of the sine curve of the text):

With the main enemies [who were the prejudiced and brainwashed general public, and the McCarthyite anti-Red vigilantes in high places] now internal to academia, the elaborate tactics of stealth directed against outsiders . . . hiring one’s own graduate students, publishing in obscure places if at all, and pretending to make hires while actually delaying them—were no longer necessary. Simply ignoring professors outside one’s own field and being ignored by them in return provided sufficient cover. (p.159)

I think it would be only fair at this point of the text, before going onto McCumber’s own intellectual weapon of defense against the now ancient dogmas of analytic philosophy, enunciated in the Epilogue, to allow Reichenbachians a chance to reply (after a few remarks about the context of the reply and a few other replies). In general, to be intellectually fair and honest, the wide condemnation of Philosophy in the America of the 50s also should have its day in the court of Reason in all its varieties. Because there are so many varieties of Reason, it would only be fair to pick up on four courts of hearing—I am not merely referring to the Reason of the pluralism in intellectual life today, but of the overlooked pluralism of intellectual life of the 50s in America.

Undercurrents Against Positivism

I am actually going to pick up on the four schools of anti-logical positivism (or at least those who were friendly and unfriendly critics, and those who just went their own way not bothering to criticize logical positivism but to pursue their own lights regardless of the criticisms of logical positivists.) Furthermore, I will only mention people who were mentioned in this book as part of the mainstream intellectual adherents of the ”operating philosophy” of America.

First, let’s give Wittgenstein a hearing, not the “Whereof you cannot speak, be silent” Wittgenstein, but the so-called later Wittgenstein of his posthumously published works (in the 50s and until very recently). I pick Wittgenstein first because his later philosophy of the 50s is antithetical to the mainstream philosophy of the 50s that became the “operating philosophy” of America. Wittgenstein (and various philosophers who influenced American philosophy but practiced ordinary language philosophy mainly in England, not mentioned in this book) clearly recognized and brought to the light of day the importance of how culture influences thought via language games. The Wittgensteinian dictum of “no private language” and the Wittgensteinian thought experiment of not understanding a lion that could speak, is intended to contextualize the intellectual role of the individual and the thought and language of the individual by focusing on the public nature of language and mind.

McCumber could reply, Wittgensteinians except for Rorty, largely mumbled among themselves, and wrote obscure short articles and books (that were really long articles) and so were stealthily pursuing their own little puzzles hardly known outside their own specializations within philosophy let alone outside philosophy. This goes to prove McCumber’s point: the public quiescence of philosophy allowed the Cold War Ideology to go unchallenged, and Cold War practices of self-censoring what is said in public and who are hired in academia, to go on behind doors closed to outside scrutiny—not only to the scrutiny of the Red Scare mongers, but as well to the scrutiny of independent thinkers wherever they happened to land a job whether in or out of academia.

Second, now let’s give Reichenbach, as a representative and founder of America’s “operating philosophy” in the Cold War, a chance to reply: Naturalism applied to philosophy is no mere extension of science but an answer to the traditional big questions of philosophy—an answer that historically stems from the Pre-Socratics—that were the progenitors of modern rational thought including the sciences of today: cosmology, physics, mathematics, evolutionary biology, psychology, sociology, and economics. Moreover, , though there may be no “logic of discovery”, there is still a social aspect for science—and in the social aspect, there are conventions that evolve with science—and similarly all intellectual disciplines. In other words, there is a social aspect to the methodology of science, in particular to the methodologies for the use of experiment and verification/refutation in science. Whether or not there are higher-level social conventions that govern all intellectual disciplines is open to discussion.

McCumber can reply that he critically discussed Reichenbach’s theory of the social aspect of sciences in the book:

But Reichenbach has a limited view of what this kind of scientific cooperation [society/Republic] amounts to…Scientific collaboration is thus a sort of quantitative amplification, in which many different individuals can pool their intellectual strength because they are all, in principle, doing exactly the same thing. . . . The scientific community, applying reason to observations, is thus not a set of clashing perspectives . . . but a sort of “superperson.” (p.100)

Society reduces to the sum of abstract logical individuals. The product of social interaction in a community of intellectuals equals the thought of the logically constructed idealized individual. Everyone, according to Reichenbach, in an intellectual community, must come up with the same answers as long as the algorithms, of reason are applied to the same data, correctly or uniformly.

Third, though not attacked in the book, Bertrand Russell, deserves a voice. Russell is mentioned in the book as an early pre-Cold War victim of anti-atheist religious fundamentalist pressure groups who lobbied for the firing of Russell from UCLA and from his next stop, CCNY. Russell’s case is a proto-version of the later American public witch-hunting of leftist intellectuals. How Russell could speak up goes as follows: Russell’s pioneering efforts provided the foundations in logico-mathematical reasoning for the development of analytic philosophy.

He was much admired by the logical positivists for starting an intellectual revolution in philosophy that turned philosophy from woolly thinking enmeshed in religion, mysticism, idealism, and a discipline without discipline, into a critical enquiry using the latest intellectual techniques available to scientists and mathematicians. Moreover, Russell used these tools of critical enquiry not only to tackle the fundamental philosophical problems where he also constantly revised his theories, but also to tackle the social, political, and ethical issues of the day for a wide audience. Hence, for Russell (unlike most of his followers including Wittgenstein, A.J. Ayer, and Quine) analytic philosophy was used to blast the idols of the day—especially the increasing production, testing, development and storing of nuclear weapons as a “deterrent”.

McCumber’s reply is easy: the exception proves the rule. In most cases, analytic philosophy turned its critical enquiry upon itself and even a-historically treated classical philosophers as either proto-analytic philosophers (when those older views or arguments were endorsed by the analytic school of philosophy) or as muddled, without looking at historical context. The inward approach of most analytic philosophers reveals that their use of analytic philosophy as a “stealth” weapon—to keep undetected from the outside world in the Cold War—is highlighted by contrast with how Russell was brave enough to expose all his intellectual armoury to attack from the outer world. It is not that analytic philosophy is inherently an insider-game, it is that as an insider-game, analytic philosophy, on the one side, avoided trouble from Cold War evangelists; and analytic philosophy as an insider-game, on the other side, played into the hands of the Red Scare avant-garde by not avoiding confrontation with those keen to find a “commie in every corner.”

Fourth, Hayek and Popper are treated as Cold Warriors as if it were both common knowledge and unquestionable truth—and so deserve a chance to set the record straight according to their own lights. Friedrich Hayek and Karl Popper, though mentioned in the book as anti-communist, which they were, are not mentioned as anti-scientism or anti-unified science.

Both were against the doctrine of applying a singular, supposed universal scientific method to all disciplines including history and economics. Both thought that history had no laws: not material, not natural, not economic, not social. Historical events are contingent and unique; therefore, historical events are not repeatable and so have no “laws” or even “regularities” unlike the natural sciences. Economics assumes a social level not reducible to psychology, hence, the only law of economics is the hypothetical zero-law of rational behaviour in idealized situations, that is used to expose what is unexpected, and therefore treat the unexpected as a problem to be explained, though never completely.

McCumber’s reply is apparently an easy one too: Hayek and Popper adopted “methodological individualism” as an explanation of the social. Hence, the social becomes the abstract individual with identical goals and beliefs. Moreover, Hayek and Popper, though against scientism and the unity of scientific method—across disciplines—were avowed followers of the Enlightenment. Popper advocated “critical rationalism”, a fringe school of philosophy that aims to apply rationality universally in all disciplines. Moreover, Popper, especially does not admit that rationality is culturally, temporally, and disciplinarily relative.

(Popper argues against what he calls the “myth of the framework”, contrary to the cultural relativism held by Wittgenstein, Kuhn, Foucault, Post-Modernism, and apparently McCumber as well: culture permeates but does not totalize all thought, perception, and action; otherwise, liminal, transitional, and fringe thinkers could not occur, and their thoughts and activities would be inconceivable. However, this aside about Popper, it is important to note, does not undercut McCumber’s point that intellectual deviance does actually occur. Moreover, according to McCumber, intellectual deviance is and was insufficient to disturb other than as a nuisance effect, the hegemony of America’s “operating philosophy”—analytic philosophy and its subservience to the McCarthy Effect.)

Conclusion

How then, might the reader of this review ask, does the text under review, answer the question: how can we thoroughly expose and thoroughly debunk whatever elements remain in philosophy from the era of the Cold War? The part of the intellectual iceberg of the American ideology (paradigm/dispositive) of the Cold War that remains is the part out of view—the most hazardous part to enquirers at sail in the ocean of thought (in every field of enquiry, and even in our everyday thinking about everyday matters).

John McCumber outlines in a subsection of the Epilogue, “Reason Beyond Rational Choice”, (pp. 164 ff.) a 5 step program, for overcoming the meld of scientific philosophy and Rational Choice Theory that evolved into modern analytic philosophy. Here is a concise version of a manifesto for a program that appears to comprise both a revision and fusion of good old-fashioned American pragmatism (in the footsteps of Rorty) and Americanized post-modernism.

First, engage in dialectics—people passionately arguing together from different cultural/intellectual outlooks. Second, the aim is not to win, but to gain mutual understanding, and even help each other better articulate their own viewpoints. Third, recognize the historical background for each other’s different outlooks—contextualize outlooks rather than universalize outlooks. Fourth, use no rules or for whatever minimal rules are used, treat them as guidelines to be modified and replaced as the situation demands, and as the dialectics evolve. Fifth, attempt to let a harmonization of outlooks develop without overwhelming or drowning out the different voices.

There are three questions a reader of the book might pose to the author—that are called forth by the very text of the book and inherent in the deepest level of the book. I will state the three questions below that arise from the deep level tacit premise of the book. This tacit premise goes roughly in this way: The individuals in a professional field of an academic institution where independent thinkers are protected by the professional ethics of academic freedom as well as the laws of most democratic countries that guarantee freedom of speech and thought, can be “subjectivized” (in the terminology of McCumber adapted from post-modernist thinkers). “Subjectivization” is the unconscious domination of academic thought that creates a subliminal conformism to a mainstream of one voice in philosophy and becomes absorbed into a monolithic American ideology.

I conclude with the three questions that pop-out of the logic of a situation where an academic mainstream arises and catches those in it unawares; and, where in practice, regardless of theory and regardless of the advocacy of pluralism, members of the non-analytic schools of thought until today are either unemployed, underemployed or marginalized both in academia and in business.

1) How has the God of the Cold War and the iceberg of the American Cold War ideology though exposed, survived the voluminous talks and texts about pluralism, multiculturalism, multi-genderism, diversity…? 2) Or, if the Cold War God is dead, what is the subliminal ideology/paradigm/dispositive that has replaced the Cold War ideology and has in turn captured American life where an evolved analytic, but still analytic roaring mainstream drowns out alternative voices? 3) Is the whole neo-Kuhnian and neo-Foucaultian trend-setting and widely used but vague and metaphorical terminology of paradigm/dispositive, misleading; and so, are there other externalities at work, perhaps those in front of our noses—such as the current economic-techno-social structures that provide a niche for the professionalization of elites that allows those elites to separate themselves from the everyday world; and, create new places of power and control for themselves?

References

McCumber, John. The Philosophy Scare: The Politics of Reason in the Early Cold War. Chicago: University of Chicago Press, 2016.

Author Information: Alfred Moore, University of York, UK, alfred.moore@york.ac.uk

Moore, Alfred. “Transparency and the Dynamics of Trust and Distrust.” Social Epistemology Review and Reply Collective 7, no. 4 (2018), 26-32.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3W8

Please refer to:

A climate monitoring camp at Blackheath in London, UK, on the evening of 28 August 2009.
Image by fotdmike via Flickr / Creative Commons

 

In 1961 the Journal of the American Medical Association published a survey suggesting that 90% of doctors who diagnosed cancer in their patients would choose not to tell them (Oken 1961). The doctors in the study gave a variety of reasons, including (unsubstantiated) fears that patients might commit suicide, and feelings of futility about the prospects of treatment. Among other things, this case stands as a reminder that, while it is a commonplace that lay people often don’t trust experts, at least as important is that experts often don’t trust lay people.

Paternalist Distrust

I was put in mind of this stunning example of communicative paternalism while reading Stephen John’s recent paper, “Epistemic trust and the ethics of science communication: against transparency, openness, sincerity and honesty.” John makes a case against a presumption of openness in science communication that – although his argument is more subtle – reads at times like a rational reconstruction of a doctor-patient relationship from the 1950s. What is disquieting is that he makes a case that is, at first glance, quite persuasive.

When lay people choose to trust what experts tell them, John argues, they are (or their behaviour can usefully be modelled as though they are) making two implicit judgments. The first, and least controversial, is that ‘if some claim meets scientific epistemic standards for proper acceptance, then [they] should accept that claim’ (John 2018, 77). He calls this the ‘epistemological premise’.

Secondly, however, the lay person needs to be convinced that the ‘[i]nstitutional structures are such that the best explanation for the factual content of some claim (made by a scientist, or group, or subject to some consensus) is that this claim meets scientific “epistemic standards” for proper acceptance’ (John 2018, 77). He calls this the ‘sociological premise.’ He suggests, rightly, I think, that this is the premise in dispute in many contemporary cases of distrust in science. Climate change sceptics (if that is the right word) typically do not doubt that we should accept claims that meet scientific epistemic standards; rather, they doubt that the ‘socio-epistemic institutions’ that produce scientific claims about climate change are in fact working as they should (John 2018, 77).

Consider the example of the so-called ‘climate-gate’ controversy, in which a cache of emails between a number of prominent climate scientists were made public on the eve of a major international climate summit in 2009. The emails below (quoted in Moore 2017, 141) were full of claims that might – to the unitiated – look like evidence of sharp practice. For example:

“I should warn you that some data we have we are not supposed [to] pass on to others. We can pass on the gridded data—which we do. Even if WMO [World Meteorological Organization] agrees, I will still not pass on the data. We have 25 or so years invested in the work. Why should I make the data available to you, when your aim is to try and find something wrong with it.”

“You can delete this attachment if you want. Keep this quiet also, but this is the person who is putting in FOI requests for all emails Keith and Tim have written and received re Ch 6 of AR4 We think we’ve found a way around this.”

“The other paper by MM is just garbage. … I can’t see either of these papers being in the next IPCC report. Kevin and I will keep them out somehow – even if we have to redefine what the peer-review literature is!”

“I’ve just completed Mike’s Nature trick of adding in the real temps to each series for the last 20 years (ie from 1981 onwards) amd [sic] from 1961 for Keith’s to hide the decline.”

As Phil Jones, then director of the Climate Research Unit, later admitted, the emails “do not read well.”[1] However, neither, on closer inspection,[2] did they show anything particularly out of the ordinary, and certainly nothing like corruption or fraud. Most of the controversy, it seemed, came from lay people misinterpreting the backstage conversation of scientists in light of a misleading image of what good science is supposed to look like.

The Illusions of Folk Philosophy of Science

This is the central problem identified in John’s paper. Many people, he suggests, evaluate the ‘sociological premise’ in light of a ‘folk philosophy of science’ that is worlds away from the reality of scientific practice. For this reason, revealing to a non-expert public how the sausage is made can lead not to understanding, ‘but to greater confusion’ (John 2017, 82). And worse, as he suggests happened in the climate-gate case, it might lead people to reject well-founded scientific claims in the mistaken belief that they did not meet proper epistemic standards within the relevant epistemic community. Transparency might thus lead to unwarranted distrust.

In a perfect world we might educate everybody in the theory and practice of modern science. In the absence of such a world, however, scientists need to play along with the folk belief in order to get lay audiences to adopt those claims that are in their epistemic best interests. Thus, John argues, scientists explaining themselves to lay publics should seek to ‘well-lead’ (the benevolent counterpart to mislead) their audience. That is, they should try to bring the lay person to hold the most epistemically sound beliefs, even if this means masking uncertainties, glossing complications, pretending more precision than you know to be the case, and so on.

Although John presents his argument as something close to heresy, his model of ‘well-leading’ speech describes a common enough practice. Economists, for instance, face a similar temptation to mask uncertainties and gloss complications and counter-arguments when engaging with political leaders and wider publics on issues such as the benefits and disadvantages of free trade policies.

As Dani Rodrik puts it:

As a professional economist, as an academic economist, day in and day out I see in seminars and papers a great variety of views on what the effects of trade agreements are, the ambiguous effects of deep integration. Inside economics, you see that there is not a single view on globalization. But the moment that gets translated into the political domain, economists have this view that you should never provide ammunition to the barbarians. So the barbarians are these people who don’t understand the notion of comparative advantage and the gains from trade, and you don’t want… any of these caveats, any of these uncertainties, to be reflected in the public debate. (Rodrik 2017, at c.30-34 mins).

‘Well-leading’ speech seems to be the default mode for experts talking to lay audiences.

An Intentional Deception

A crucial feature of ‘well-leading’ speech is that it has no chance of working if you tell the audience what you are up to. It is a strategy that cannot be openly avowed without undermining itself, and thus relies on a degree of deception. Furthermore, the well-leading strategy only works if the audience already trusts the experts in question, and is unlikely to help – and is likely to actively harm expert credibility – in context where experts are already under suspicion and scrutiny. John thus admits that this strategy can backfire if the audience is made aware of some of the hidden complications, and worse, as was case of in climate-gate, if it seems the experts actively sought to evade demands for transparency and accountability (John 2017, 82).

This puts experts in a bind: be ‘open and honest’ and risk being misunderstood; or engage in ‘well-leading’ speech and risk being exposed – and then misunderstood! I’m not so sure the dilemma is actually as stark as all that, but John identifies a real and important problem: When an audience misunderstands what the proper conduct of some activity consists in, then revealing information about the conduct of the activity can lead them to misjudge its quality. Furthermore, to the extent that experts have to adjust their conduct to conform to what the audience thinks it should look like, revealing information about the process can undermine the quality of the outcomes.

One economist has thus argued that accountability works best when it is based on information about outcomes, and that information about process ‘can have detrimental effects’ (Prat 2005: 863). By way of example, she compares two ways of monitoring fund managers. One way is to look at the yearly returns. The other way (exemplified, in her case, by pension funds), involves communicating directly with fund managers and demanding that they ‘explain their investment strategy’ (Prat 2005, 870). The latter strategy, she claims, produces worse outcomes than those monitored only by their results, because the agents have an incentive to act in a way that conforms to what the principal regards as appropriate rather than what the agent regards as the most effective action.

Expert Accountability

The point here is that when experts are held accountable – at the level of process – by those without the relevant expertise, their judgment is effectively displaced by that of their audience. To put it another way, if you want the benefit of expert judgment, you have to forgo the urge to look too closely at what they are doing. Onora O’Neill makes a similar point: ‘Plants don’t flourish when we pull them up too often to check how their roots are growing: political, institutional and professional life too may not flourish if we constantly uproot it to demonstrate that everything is transparent and trustworthy’ (O’Neill 2002: 19).

Of course, part of the problem in the climate case is that the outcomes are also subject to expert interpretation. When evaluating a fund manager you can select good people, leave them alone, and check that they hit their targets. But how do you evaluate a claim about likely sea-level rise over the next century? If radical change is needed now to avert such catastrophic effects, then the point is precisely not to wait and see if they are right before we act. This means that both the ‘select and trust’ and the ‘distrust and monitor’ models of accountability are problematic, and we are back with the problem: How can accountability work when you don’t know enough about the activity in question to know if it’s being done right? How are we supposed to hold experts accountable in ways that don’t undermine the very point of relying on experts?

The idea that communicative accountability to lay people can only diminish the quality either of warranted trust (John’s argument) or the quality of outcomes (Prat’s argument) presumes that expert knowledge is a finished product, so to speak. After all, if experts have already done their due diligence and could not get a better answer, then outsiders have nothing epistemically meaningful to add. But if expert knowledge is not a finished product, then demands for accountability from outsiders to the expert community can, in principle, have some epistemic value.

Consider the case of HIV-AIDS research and the role of activists in challenging expert ideas of what constituted ‘good science’ in conduct of clinical trials. In this engagement they ‘were not rejecting medical science,’ but were rather “denouncing some variety of scientific practice … as not conducive to medical progress and the health and welfare of their constituency” (Epstein 1996: 2). It is at least possible that the process of engaging with and responding to criticism can lead to learning on both sides and the production, ultimately, of better science. What matters is not whether the critics begin with an accurate view of the scientific process; rather, what matters is how the process of criticism and response is carried out.

On 25 April 2012, the AIDS Coalition to Unleash Power (ACT UP) celebrated its 25th anniversary with a protest march through Manhattan’s financial district. The march, held in partnership with Occupy Wall Street, included about 2000 people.
Image by Michael Fleshman via Flickr / Creative Commons

 

We Are Never Alone

This leads me to an important issue that John doesn’t address. One of the most attractive features of his approach is that he moves beyond the limited examples, prevalent in the social epistemology literature, of one lay person evaluating the testimony of one expert, or perhaps two competing experts. He rightly observes that experts speak for collectives and thus that we are implicitly judging the functioning of institutions when we judge expert testimony. But he misses an analogous sociological problem on the side of the lay person. We rarely judge alone. Rather, we use ‘trust proxies’ (MacKenzie and Warren 2012).

I may not know enough to know whether those climate scientists were not doing good science, but others can do that work for me. I might trust my representatives, who have on my behalf conducted open investigations and inquiries. They are not climate scientists, but they have given the matter the kind of sustained attention that I have not. I might trust particular media outlets to do this work. I might trust social movements.

To go back to the AIDS case, ACT-UP functioned for many as a trust proxy of this sort, with the skills and resources to do this sort of monitoring, developing competence but with interests more closely aligned with the wider community affected by the issue. Or I might even trust the judgments of groups of citizens randomly selected and given an opportunity to more deeply engage with the issues for just this purpose (see Gastil, Richards, and Knobloch 2014).

This hardly, on its own, solves the problem of lay judgment of experts. Indeed, it would seem to place it at one remove and introduce a layer of intermediaries. But it is worth attending to these sorts of judgments for at least two reasons. One is because, in a descriptive sense, this is what actually seems to be going on with respect to expert-lay judgment. People aren’t directly judging the claims of climate scientists, and they’re not even judging the functioning of scientific institutions; they’re simply taking cues from their own trusted intermediaries. The second is that the problems and pathologies of expert-lay communication are, in large part, problems with their roots in failures of intermediary institutions and practices.

To put it another way, I suspect that a large part of John’s (legitimate) concern about transparency is at root a concern about unmediated lay judgment of experts. After all, in the climate-gate case, we are dealing with lay people effectively looking over the shoulders of the scientists as they write their emails. One might have similar concerns about video monitoring of meetings: they seem to show you what is going on but in fact are likely to mislead you because you don’t really know what you’re looking at (Licht and Naurin 2015). You lack the context and understanding of the practice that can be provided by observers, who need not themselves be experts, but who need to know enough about the practice to tell the difference between good and bad conduct.

The same idea can apply to transparency of reasoning, involving the demand that actors give a public account of their actions. While the demand that authorities explain how and why they reached their judgments seems to fall victim to the problem of lay misunderstanding, it also offers a way out of it. After all, in John’s own telling of the case, he explains in a convincing way why the first impression (that the ‘sociological premise’ has not been fulfilled) is misleading. The initial scandal initiated a process of scrutiny in which some non-experts (such as the political representatives organising the parliamentary inquiry) engaged in closer scrutiny of the expert practice in question.

Practical lay judgment of experts does not require that lay people become experts (as Lane 2014 and Moore 2017 have argued), but it does require a lot more engagement than the average citizen would either want or have time for. The point here is that most citizens still don’t know enough to properly evaluate the sociological premise and thus properly interpret information they receive about the conduct of scientists. But they can (and do) rely on proxies to do the work of monitoring and scrutinizing experts.

Where does this leave us? John is right to say that what matters is not the generation of trust per se, but warranted trust, or an alignment of trust and trustworthiness. What I think he misses is that distrust is crucial to the possible way in which transparency can (potentially) lead to trustworthiness. Trust and distrust, on this view, are in a dynamic relation: Distrust motivates scrutiny and the creation of institutional safeguards that make trustworthy conduct more likely. Something like this case for transparency was made by Jeremy Bentham (see Bruno 2017).

John rightly points to the danger that popular misunderstanding can lead to a backfire in the transition from ‘scrutiny’ to ‘better behaviour.’ But he responds by asserting a model of ‘well-leading’ speech that seems to assume that lay people already trust experts, and he thus leaves unanswered the crucial questions raised by his central example: What are we to do when we begin from distrust and suspicion? How we might build trustworthiness out of distrust?

Contact details: alfred.moore@york.ac.uk

References

Bruno, Jonathan. “Vigilance and Confidence: Jeremy Bentham, Publicity, and the Dialectic of Trust and Distrust.” American Political Science Review, 111, no. 2 (2017) pp. 295-307.

Epstein, S. Impure Science: AIDS, Activism and the Politics of Knowledge. Berkeley and Los Angeles, CA: University of California Press, 1996.

Gastil, J., Richards, R. C., & Knobloch, K. R. “Vicarious deliberation: How the Oregon Citizens’ Initiative Review influenced deliberation in mass elections.” International Journal of Communication, 8 (2014), 62–89.

John, Stephen. “Epistemic trust and the ethics of science communication: against transparency, openness, sincerity and honesty.” Social Epistemology: A Journal of Knowledge, Culture and Policy 32, no. 2 (2017) 75-87.

Lane, Melissa. “When the Experts are Uncertain: Scientific Knowledge and the Ethics of Democratic Judgment.” Episteme 11, no. 1 (2014) 97-118.

Licht, Jenny de Fine, and Daniel Naurin. “Open Decision-Making Procedures and Public Legitimacy: An Inventory of Causal Mechanisms”. In Jon Elster (ed), Secrecy and Publicity in Votes and Debates. Cambridge: Cambridge University Press (2015), 131-151.

MacKenzie, Michael, and Mark E. Warren, “Two Trust-Based Uses of Minipublics.” In John Parkinson and Jane Mansbridge (eds.) Deliberative Systems. Cambridge: Cambridge University Press (2012), 95-124.

Moore, Alfred. Critical Elitism: Deliberation, Democracy, and the Politics of Expertise. Cambridge: Cambridge University Press, 2017.

Oken, Donald. “What to Tell Cancer Patients: A Study of Medical Attitudes.” Journal of the American Medical Association 175, no. 13 (1961) 1120-1128.

O’Neill, Onora. A Question of Trust. Cambridge: Cambridge University Press, 2002.

Prat, Andrea. The Wrong Kind of Transparency. The American Economic Review 95, no. 3 (2005), 862-877.

[1] In a statement released on 24 November 2009, http://www.uea.ac.uk/mac/comm/media/press/2009/nov/cruupdate

[2] One of eight separate investigations was by the House of Commons select committee on Science and Technology (http://www.publications.parliament.uk/pa/cm200910/cmselect/cmsctech/387/38702.htm).

Author information: Moti Mizrahi, Florida Institute of Technology, mmizrahi@fit.edu

Mizrahi, Moti. “More in Defense of Weak Scientism: Another Reply to Brown.” Social Epistemology Review and Reply Collective 7, no. 4 (2018): 7-25.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3W1

Please refer to:

Image by eltpics via Flickr / Creative Commons

 

In my (2017a), I defend a view I call Weak Scientism, which is the view that knowledge produced by scientific disciplines is better than knowledge produced by non-scientific disciplines.[1] Scientific knowledge can be said to be quantitatively better than non-scientific knowledge insofar as scientific disciplines produce more impactful knowledge–in the form of scholarly publications–than non-scientific disciplines (as measured by research output and research impact). Scientific knowledge can be said to be qualitatively better than non-scientific knowledge insofar as such knowledge is explanatorily, instrumentally, and predictively more successful than non-scientific knowledge.

Brown (2017a) raises several objections against my defense of Weak Scientism and I have replied to his objections (Mizrahi 2017b), thereby showing again that Weak Scientism is a defensible view. Since then, Brown (2017b) has reiterated his objections in another reply on SERRC. Almost unchanged from his previous attack on Weak Scientism (Brown 2017a), Brown’s (2017b) objections are the following:

  1. Weak Scientism is not strong enough to count as scientism.
  2. Advocates of Strong Scientism should not endorse Weak Scientism.
  3. Weak Scientism does not show that philosophy is useless.
  4. My defense of Weak Scientism appeals to controversial philosophical assumptions.
  5. My defense of Weak Scientism is a philosophical argument.
  6. There is nothing wrong with persuasive definitions of scientism.

In what follows, I will respond to these objections, thereby showing once more that Weak Scientism is a defensible view. Since I have been asked to keep this as short as possible, however, I will try to focus on what I take to be new in Brown’s (2017b) latest attack on Weak Scientism.

Is Weak Scientism Strong Enough to Count as Scientism?

Brown (2017b) argues for (1) on the grounds that, on Weak Scientism, “philosophical knowledge may be nearly as valuable as scientific knowledge.” Brown (2017b, 4) goes on to characterize a view he labels “Scientism2,” which he admits is the same view as Strong Scientism, and says that “there is a huge logical gap between Strong Scientism (Scientism2) and Weak Scientism.”

As was the case the first time Brown raised this objection, it is not clear how it is supposed to show that Weak Scientism is not “really” a (weaker) version of scientism (Mizrahi 2017b, 10-11). Of course there is a logical gap between Strong Scientism and Weak Scientism; that is why I distinguish between these two epistemological views. If I am right, Strong Scientism is too strong to be a defensible version of scientism, whereas Weak Scientism is a defensible (weaker) version of scientism (Mizrahi 2017a, 353-354).

Of course Weak Scientism “leaves open the possibility that there is philosophical knowledge” (Brown 2017b, 5). If I am right, such philosophical knowledge would be inferior to scientific knowledge both quantitatively (in terms of research output and research impact) and qualitatively (in terms of explanatory, instrumental, and predictive success) (Mizrahi 2017a, 358).

Brown (2017b, 5) does try to offer a reason “for thinking it strange that Weak Scientism counts as a species of scientism” in his latest attack on Weak Scientism, which does not appear in his previous attack. He invites us to imagine a theist who believes that “modern science is the greatest new intellectual achievement since the fifteenth century” (emphasis in original). Brown then claims that this theist would be an advocate of Weak Scientism because Brown (2017b, 6) takes “modern science is the greatest new intellectual achievement since the fifteenth century” to be “(roughly) equivalent to Weak Scientism.” For Brown (2017b, 6), however, “it seems odd, to say the least, that [this theist] should count as an advocate (even roughly) of scientism.”

Unfortunately, Brown’s appeal to intuition is rather difficult to evaluate because his hypothetical case is under-described.[2] First, the key phrase, namely, “modern science is the greatest new intellectual achievement since the fifteenth century,” is vague in more ways than one. I have no idea what “greatest” is supposed to mean here. Greatest in what respects? What are the other “intellectual achievements” relative to which science is said to be “the greatest”?

Also, what does “intellectual achievement” mean here? There are multiple accounts and literary traditions in history and philosophy of science, science studies, and the like on what counts as “intellectual achievements” or progress in science (Mizrahi 2013b). Without a clear understanding of what these key phrases mean here, it is difficult to tell how Brown’s intuition about this hypothetical case is supposed to be a reason to think that Weak Scientism is not “really” a (weaker) version of scientism.

Toward the end of his discussion of (1), Brown says something that suggests he actually has an issue with the word ‘scientism’. Brown (2017b, 6) writes, “perhaps Mizrahi should coin a new word for the position with respect to scientific knowledge and non-scientific forms of academic knowledge he wants to talk about” (emphasis in original). It should be clear, of course, that it does not matter what label I use for the view that “Of all the knowledge we have, scientific knowledge is the best knowledge” (Mizrahi 2017a, 354; emphasis in original). What matters is the content of the view, not the label.

Whether Brown likes the label or not, Weak Scientism is a (weaker) version of scientism because it is the view that scientific ways of knowing are superior (in certain relevant respects) to non-scientific ways of knowing, whereas Strong Scientism is the view that scientific ways of knowing are the only ways of knowing. As I have pointed out in my previous reply to Brown, whether scientific ways of knowing are superior to non-scientific ways of knowing is essentially what the scientism debate is all about (Mizrahi 2017b, 13).

Before I conclude this discussion of (1), I would like to point out that Brown seems to have misunderstood Weak Scientism. He (2017b, 3) claims that “Weak Scientism is a normative and not a descriptive claim.” This is a mistake. As a thesis (Peels 2017, 11), Weak Scientism is a descriptive claim about scientific knowledge in comparison to non-scientific knowledge. This should be clear provided that we keep in mind what it means to say that scientific knowledge is better than non-scientific knowledge. As I have argued in my (2017a), to say that scientific knowledge is quantitatively better than non-scientific knowledge is to say that there is a lot more scientific knowledge than non-scientific knowledge (as measured by research output) and that the impact of scientific knowledge is greater than that of non-scientific knowledge (as measured by research impact).

To say that scientific knowledge is qualitatively better than non-scientific knowledge is to say that scientific knowledge is explanatorily, instrumentally, and predictively more successful than non-scientific knowledge. All these claims about the superiority of scientific knowledge to non-scientific knowledge are descriptive, not normative, claims. That is to say, Weak Scientism is the view that, as a matter of fact, knowledge produced by scientific fields of study is quantitatively (in terms of research output and research impact) and qualitatively (in terms of explanatory, instrumental, and predictive success) better than knowledge produced by non-scientific fields of study.

Of course, Weak Scientism does have some normative implications. For instance, if scientific knowledge is indeed better than non-scientific knowledge, then, other things being equal, we should give more evidential weight to scientific knowledge than to non-scientific knowledge. For example, suppose that I am considering whether to vaccinate my child or not. On the one hand, I have scientific knowledge in the form of results from clinical trials according to which MMR vaccines are generally safe and effective.

On the other hand, I have knowledge in the form of stories about children who were vaccinated and then began to display symptoms of autism. If Weak Scientism is true, and I want to make a decision based on the best available information, then I should give more evidential weight to the scientific knowledge about MMR vaccines than to the anecdotal knowledge about MMR vaccines simply because the former is scientific (i.e., knowledge obtained by means of the methods of science, such as clinical trials) and the latter is not.

Should Advocates of Strong Scientism Endorse Weak Scientism?

Brown (2017b, 7) argues for (2) on the grounds that “once the advocate of Strong Scientism sees that an advocate of Weak Scientism admits the possibility that there is real knowledge other than what is produced by the natural sciences […] the advocate of Strong Scientism, at least given their philosophical presuppositions, will reject Weak Scientism out of hand.” It is not clear which “philosophical presuppositions” Brown is talking about here. Brown quotes Rosenberg (2011, 20), who claims that physics tells us what reality is like, presumably as an example of a proponent of Strong Scientism who would not endorse Weak Scientism. But it is not clear why Brown thinks that Rosenberg would “reject Weak Scientism out of hand” (Brown 2017d, 7).

Like other proponents of scientism, Rosenberg should endorse Weak Scientism because, unlike Strong Scientism, Weak Scientism is a defensible view. Insofar as we should endorse the view that has the most evidence in its favor, Weak Scientism has more going for it than Strong Scientism does. For to show that Strong Scientism is true, one would have to show that no field of study other than scientific ones can produce knowledge. Of course, that is not easy to show. To show that Weak Scientism is true, one only needs to show that the knowledge produced in scientific fields of study is better (in certain relevant respects) than the knowledge produced in non-scientific fields.

That is precisely what I show in my (2017a). I argue that the knowledge produced in scientific fields is quantitatively better than the knowledge produced in non-scientific fields because there is a lot more scientific knowledge than non-scientific knowledge (as measured by research output) and the former has a greater impact than the latter (as measured by research impact). I also argue that the knowledge produced in scientific fields is qualitatively better than knowledge produced in non-scientific fields because it is more explanatorily, instrumentally, and predictively successful.

Contrary to what Brown (2017b, 7) seems to think, I do not have to show “that there is real knowledge other than scientific knowledge.” To defend Weak Scientism, all I have to show is that scientific knowledge is better (in certain relevant respects) than non-scientific knowledge. If anyone must argue for the claim that there is real knowledge other than scientific knowledge, it is Brown, for he wants to defend the value or usefulness of non-scientific knowledge, specifically, philosophical knowledge.

It is important to emphasize the point about the ways in which scientific knowledge is quantitatively and qualitatively better than non-scientific knowledge because it looks like Brown has confused the two. For he thinks that I justify my quantitative analysis of scholarly publications in scientific and non-scientific fields by “citing the precedent of epistemologists who often treat all items of knowledge as qualitatively the same” (Brown 2017b, 22; emphasis added).

Here Brown fails to carefully distinguish between my claim that scientific knowledge is quantitatively better than non-scientific knowledge and my claim that scientific knowledge is qualitatively better than non-scientific knowledge. For the purposes of a quantitative study of knowledge, information and data scientists can do precisely what epistemologists do and “abstract from various circumstances (by employing variables)” (Brown 2017b, 22) in order to determine which knowledge is quantitatively better.

How Is Weak Scientism Relevant to the Claim that Philosophy Is Useless?

Brown (2017b, 7-8) argues for (3) on the grounds that “Weak Scientism itself implies nothing about the degree to which philosophical knowledge is valuable or useful other than stating scientific knowledge is better than philosophical knowledge” (emphasis in original).

Strictly speaking, Brown is wrong about this because Weak Scientism does imply something about the degree to which scientific knowledge is better than philosophical knowledge. Recall that to say that scientific knowledge is quantitatively better than non-scientific knowledge is to say that scientific fields of study publish more research and that scientific research has greater impact than the research published in non-scientific fields of study.

Contrary to what Brown seems to think, we can say to what degree scientific research is superior to non-scientific research in terms of output and impact. That is precisely what bibliometric indicators like h-index and other metrics are for (Rousseau et al. 2018). Such bibliometric indicators allow us to say how many articles are published in a given field, how many of those published articles are cited, and how many times they are cited. For instance, according to Scimago Journal & Country Rank (2018), which contains data from the Scopus database, of the 3,815 Philosophy articles published in the United States in 2016-2017, approximately 14% are cited, and their h-index is approximately 160.

On the other hand, of the 24,378 Psychology articles published in the United States in 2016-2017, approximately 40% are cited, and their h-index is approximately 640. Contrary to what Brown seems to think, then, we can say to what degree research in Psychology is better than research in Philosophy in terms of research output (i.e., number of publications) and research impact (i.e., number of citations). We can use the same bibliometric indicators and metrics to compare research in other scientific and non-scientific fields of study.

As I have already said in my previous reply to Brown, “Weak Scientism does not entail that philosophy is useless” and “I have no interest in defending the charge that philosophy is useless” (Mizrahi 2017b, 11-12). So, I am not sure why Brown brings up (3) again. Since he insists, however, let me explain why philosophers who are concerned about the charge that philosophy is useless should engage with Weak Scientism as well.

Suppose that a foundation or agency is considering whether to give a substantial grant to one of two projects. The first project is that of a philosopher who will sit in her armchair and contemplate the nature of friendship.[3] The second project is that of a team of social scientists who will conduct a longitudinal study of the effects of friendship on human well-being (e.g., Yang et al. 2016).

If Weak Scientism is true, and the foundation or agency wants to fund the project that is likely to yield better results, then it should give the grant to the team of social scientists rather than to the armchair philosopher simply because the former’s project is scientific, whereas the latter’s is not. This is because the scientific project will more likely yield better knowledge than the non-scientific project will. In other words, unlike the project of the armchair philosopher, the scientific project will probably produce more research (i.e., more publications) that will have a greater impact (i.e., more citations) and the knowledge produced will be explanatorily, instrumentally, and predictively more successful than any knowledge that the philosopher’s project might produce.

This example should really hit home for Brown, since reading his latest attack on Weak Scientism gives one the impression that he thinks of philosophy as a personal, “self-improvement” kind of enterprise, rather than an academic discipline or field of study. For instance, he seems to be saying that philosophy is not in the business of producing “new knowledge” or making “discoveries” (Brown 2017b, 17).

Rather, Brown (2017b, 18) suggests that philosophy “is more about individual intellectual progress rather than collective intellectual progress.” Individual progress or self-improvement is great, of course, but I am not sure that it helps Brown’s case in defense of philosophy against what he sees as “the menace of scientism.” For this line of thinking simply adds fuel to the fire set by those who want to see philosophy burn. As I point out in my (2017a), scientists who dismiss philosophy do so because they find it academically useless.

For instance, Hawking and Mlodinow (2010, 5) write that ‘philosophy is dead’ because it ‘has not kept up with developments in science, particularly physics’ (emphasis added). Similarly, Weinberg (1994, 168) says that, as a working scientist, he ‘finds no help in professional philosophy’ (emphasis added). (Mizrahi 2017a, 356)

Likewise, Richard Feynman is rumored to have said that “philosophy of science is about as useful to scientists as ornithology is to birds” (Kitcher 1998, 32). It is clear, then, that what these scientists complain about is professional or academic philosophy. Accordingly, they would have no problem with anyone who wants to pursue philosophy for the sake of “individual intellectual progress.” But that is not the issue here. Rather, the issue is academic knowledge or research.

Does My Defense of Weak Scientism Appeal to Controversial Philosophical Assumptions?

Brown (2017b, 9) argues for (4) on the grounds that I assume that “we are supposed to privilege empirical (I read Mizrahi’s ‘empirical’ here as ‘experimental/scientific’) evidence over non-empirical evidence.” But that is question-begging, Brown claims, since he takes me to be assuming something like the following: “If the question of whether scientific knowledge is superior to [academic] non-scientific knowledge is a question that one can answer empirically, then, in order to pose a serious challenge to my [Mizrahi’s] defense of Weak Scientism, Brown must come up with more than mere ‘what ifs’” (Mizrahi 2017b, 10; quoted in Brown 2017b, 8).

This objection seems to involve a confusion about how defeasible reasoning and defeating evidence are supposed to work. Given that “a rebutting defeater is evidence which prevents E from justifying belief in H by supporting not-H in a more direct way” (Kelly 2016), claims about what is actual cannot be defeated by mere possibilities, since claims of the form “Possibly, p” do not prevent a piece of evidence from justifying belief in “Actually, p” by supporting “Actually, not-p” directly.

For example, the claim “Hillary Clinton could have been the 45th President of the United States” does not prevent my perceptual and testimonial evidence from justifying my belief in “Donald Trump is the 45th President of the United States,” since the former does not support “It is not the case that Donald Trump is the 45th President of the United States” in a direct way. In general, claims of the form “Possibly, p” are not rebutting defeaters against claims of the form “Actually, p.” Defeating evidence against claims of the form “Actually, p” must be about what is actual (or at least probable), not what is merely possible, in order to support “Actually, not-p” directly.

For this reason, although “the production of some sorts of non-scientific knowledge work may be harder than the production of scientific knowledge” (Brown 2017b, 19), Brown gives no reasons to think that it is actually or probably harder, which is why this possibility does nothing to undermine the claim that scientific knowledge is actually better than non-scientific knowledge. Just as it is possible that philosophical knowledge is harder to produce than scientific knowledge, it is also possible that scientific knowledge is harder to produce than philosophical knowledge. It is also possible that scientific and non-scientific knowledge are equally hard to produce.

Similarly, the possibility that “a little knowledge about the noblest things is more desirable than a lot of knowledge about less noble things” (Brown 2017b, 19), whatever “noble” is supposed to mean here, does not prevent my bibliometric evidence (in terms of research output and research impact) from justifying the belief that scientific knowledge is better than non-scientific knowledge. Just as it is possible that philosophical knowledge is “nobler” (whatever that means) than scientific knowledge, it is also possible that scientific knowledge is “nobler” than philosophical knowledge or that they are equally “noble” (Mizrahi 2017b, 9-10).

In fact, even if Brown (2017a, 47) is right that “philosophy is harder than science” and that “knowing something about human persons–particularly qua embodied rational being–is a nobler piece of knowledge than knowing something about any non-rational object” (Brown 2017b, 21), whatever “noble” is supposed to mean here, it would still be the case that scientific fields produce more knowledge (as measured by research output), and more impactful knowledge (as measured by research impact), than non-scientific disciplines.

So, I am not sure why Brown keeps insisting on mentioning these mere possibilities. He also seems to forget that the natural and social sciences study human persons as well. Even if knowledge about human persons is “nobler” (whatever that means), there is a lot of scientific knowledge about human persons coming from scientific fields, such as anthropology, biology, genetics, medical science, neuroscience, physiology, psychology, and sociology, to name just a few.

One of the alleged “controversial philosophical assumptions” that my defense of Weak Scientism rests on, and that Brown (2017a) complains about the most in his previous attack on Weak Scientism, is my characterization of philosophy as the scholarly work that professional philosophers do. In my previous reply, I argue that Brown is not in a position to complain that this is a “controversial philosophical assumption,” since he rejects my characterization of philosophy as the scholarly work that professional philosophers produce, but he does not tell us what counts as philosophical (Mizrahi 2017b, 13). Well, it turns out that Brown does not reject my characterization of philosophy after all. For, after he was challenged to say what counts as philosophical, he came up with the following “sufficient condition for pieces of writing and discourse that count as philosophy” (Brown 2017b, 11):

(P) Those articles published in philosophical journals and what academics with a Ph.D. in philosophy teach in courses at public universities with titles such as Introduction to Philosophy, Metaphysics, Epistemology, Normative Ethics, and Philosophy of Science (Brown 2017b, 11; emphasis added).

Clearly, this is my characterization of philosophy in terms of the scholarly work that professional philosophers produce. Brown simply adds teaching to it. Since he admits that “scientists teach students too” (Brown 2017b, 18), however, it is not clear how adding teaching to my characterization of philosophy is supposed to support his attack on Weak Scientism. In fact, it may actually undermine his attack on Weak Scientism, since there is a lot more teaching going on in STEM fields than in non-STEM fields.

According to data from the National Center for Education Statistics (2017), in the 2015-16 academic year, post-secondary institutions in the United States conferred only 10,157 Bachelor’s degrees in philosophy and religious studies compared to 113,749 Bachelor’s degrees in biological and biomedical sciences, 106,850 Bachelor’s degrees in engineering, and 117,440 in psychology. In general, in the 2015-2016 academic year, 53.3% of the Bachelor’s degrees conferred by post-secondary institutions in the United States were degrees in STEM fields, whereas only 5.5% of conferred Bachelor’s degrees were in the humanities (Figure 1).

Figure 1. Bachelor’s degrees conferred by post-secondary institutions in the US, by field of study, 2015-2016 (Source: NCES)

 

Clearly, then, there is a lot more teaching going on in science than in philosophy (or even in the humanities in general), since a lot more students take science courses and graduate with degrees in scientific fields of study. So, even if Brown is right that we should include teaching in what counts as philosophy, it is still the case that scientific fields are quantitatively better than non-scientific fields.

Since Brown (2017b, 13) seems to agree that philosophy (at least in part) is the scholarly work that academic philosophers produce, it is peculiar that he complains, without argument, that “an understanding of philosophy and knowledge as operational is […] shallow insofar as philosophy and knowledge can’t fit into the narrow parameters of another empirical study.” Once Brown (2017b, 11) grants that “Those articles published in philosophical journals” count as philosophy, he thereby also grants that these journal articles can be studied empirically using the methods of bibliometrics, information science, or data science.

That is, Brown (2017b, 11) concedes that philosophy consists (at least in part) of “articles published in philosophical journals,” and so these articles can be compared to other articles published in science journals to determine research output, and they can also be compared to articles published in science journals in terms of citation counts to determine research impact. What exactly is “shallow” about that? Brown does not say.

A, perhaps unintended, consequence of Brown’s (P) is that the “great thinkers from the past” (Brown 2017b, 18), those that Brown (2017b, 13) likes to remind us “were not professional philosophers,” did not do philosophy, by Brown’s own lights. For “Socrates, Plato, Augustine, Descartes, Locke, and Hume” (Brown 2017b, 13) did not publish in philosophy journals, were not academics with a Ph.D. in philosophy, and did not teach at public universities courses “with titles such as Introduction to Philosophy, Metaphysics, Epistemology, Normative Ethics, and Philosophy of Science” (Brown 2017b, 11).

Another peculiar thing about Brown’s (P) is the restriction of the philosophical to what is being taught in public universities. What about community colleges and private universities? Is Brown suggesting that philosophy courses taught at private universities do not count as philosophy courses? This is peculiar, especially in light of the fact that, at least according to The Philosophical Gourmet Report (Brogaard and Pynes 2018), the top ranked philosophy programs in the United States are mostly located in private universities, such as New York University and Princeton University.

Is My Defense of Weak Scientism a Scientific or a Philosophical Argument?

Brown argues for (5) on the grounds that my (2017a) is published in a philosophy journal, namely, Social Epistemology, and so it a piece of philosophical knowledge by my lights, since I count as philosophy the research articles that are published in philosophy journals.

Brown would be correct about this if Social Epistemology were a philosophy journal. But it is not. Social Epistemology: A Journal of Knowledge, Culture and Policy is an interdisciplinary journal. The journal’s “aim and scope” statement makes it clear that Social Epistemology is an interdisciplinary journal:

Social Epistemology provides a forum for philosophical and social scientific enquiry that incorporates the work of scholars from a variety of disciplines who share a concern with the production, assessment and validation of knowledge. The journal covers both empirical research into the origination and transmission of knowledge and normative considerations which arise as such research is implemented, serving as a guide for directing contemporary knowledge enterprises (Social Epistemology 2018).

The fact that Social Epistemology is an interdisciplinary journal, with contributions from “Philosophers, sociologists, psychologists, cultural historians, social studies of science researchers, [and] educators” (Social Epistemology 2018) would not surprise anyone who is familiar with the history of the journal. The founding editor of the journal is Steve Fuller, who was trained in an interdisciplinary field, namely, History and Philosophy of Science (HPS), and is currently the Auguste Comte Chair in Social Epistemology in the Department of Sociology at Warwick University. Brown (2017b, 15) would surely agree that sociology is not philosophy, given that, for him, “cataloguing what a certain group of people believes is sociology and not philosophy.” The current executive editor of the journal is James H. Collier, who is a professor of Science and Technology in Society at Virginia Tech, and who was trained in Science and Technology Studies (STS), which is an interdisciplinary field as well.

Brown asserts without argument that the methods of a scientific field of study, such as sociology, are different in kind from those of philosophy: “What I contend is that […] philosophical methods are different in kind from those of the experimental scientists [sciences?]” (Brown 2017b, 24). He then goes on to speculate about what it means to say that an explanation is testable (Brown 2017b, 25). What Brown comes up with is rather unclear to me. For instance, I have no idea what it means to evaluate an explanation by inductive generalization (Brown 2017b, 25).

Instead, Brown should have consulted any one of the logic and reasoning textbooks I keep referring to in my (2017a) and (2017b) to find out that it is generally accepted among philosophers that the good-making properties of explanations, philosophical and otherwise, include testability among other good-making properties (see, e.g., Sinnott-Armstrong and Fogelin 2010, 257). As far as testability is concerned, to test an explanation or hypothesis is to determine “whether predictions that follow from it are true” (Salmon 2013, 255). In other words, “To say that a hypothesis is testable is at least to say that some prediction made on the basis of that hypothesis may confirm or disconfirm it” (Copi et al. 2011, 515).

For this reason, Feser’s analogy according to which “to compare the epistemic values of science and philosophy and fault philosophy for not being good at making testable predications [sic] is like comparing metal detectors and gardening tools and concluding gardening tools are not as good as metal detectors because gardening tools do not allow us to successfully detect for metal” (Brown 2017b, 25), which Brown likes to refer to (Brown 2017a, 48), is inapt.

It is not an apt analogy because, unlike metal detectors and gardening tools, which serve different purposes, both science and philosophy are in the business of explaining things. Indeed, Brown admits that, like good scientific explanations, “good philosophical theories explain things” (emphasis in original). In other words, Brown admits that both scientific and philosophical theories are instruments of explanation (unlike gardening and metal-detecting instruments). To provide good explanations, then, both scientific and philosophical theories must be testable (Mizrahi 2017b, 19-20).

What Is Wrong with Persuasive Definitions of Scientism?

Brown (2017b, 31) argues for (6) on the grounds that “persuasive definitions are [not] always dialectically pernicious.” He offers an argument whose conclusion is “abortion is murder” as an example of an argument for a persuasive definition of abortion. He then outlines an argument for a persuasive definition of scientism according to which “Weak Scientism is a view that has its advocates putting too high a value on scientific knowledge” (Brown 2017b, 32).

The problem, however, is that Brown is confounding arguments for a definition with the definition itself. Having an argument for a persuasive definition does not change the fact that it is a persuasive definition. To illustrate this point, let me give an example that I think Brown will appreciate. Suppose I define theism as an irrational belief in the existence of God. That is, “theism” means “an irrational belief in the existence of God.” I can also provide an argument for this definition:

P1: If it is irrational to have paradoxical beliefs and God is a paradoxical being, then theism is an irrational belief in the existence of God.

P2: It is irrational to have paradoxical beliefs and God is a paradoxical being (e.g., the omnipotence paradox).[4]

Therefore,

C: Theism is an irrational belief in the existence of God.

But surely, theists will complain that my definition of theism is a “dialectically pernicious” persuasive definition. For it stacks the deck against theists. It states that theists are already making a mistake, by definition, simply by believing in the existence of God. Even though I have provided an argument for this persuasive definition of theism, my definition is still a persuasive definition of theism, and my argument is unlikely to convince anyone who doesn’t already think that theism is irrational. Indeed, Brown (2017b, 30) himself admits that much when he says “good luck with that project!” about trying to construct a sound argument for “abortion is murder.” I take this to mean that pro-choice advocates would find his argument for “abortion is murder” dialectically inert precisely because it defines abortion in a manner that transfers “emotive force” (Salmon 2013, 65), which they cannot accept.

Likewise, theists would find the argument above dialectically inert precisely because it defines theism in a manner that transfers “emotive force” (Salmon 2013, 65), which they cannot accept. In other words, Brown seems to agree that there are good dialectical reasons to avoid appealing to persuasive definitions. Therefore, like “abortion is murder,” “theism is an irrational belief in the existence of God,” and “‘Homosexual’ means ‘one who has an unnatural desire for those of the same sex’” (Salmon 2013, 65), “Weak Scientism is a view that has its advocates putting too high a value on scientific knowledge” (Brown 2017b, 32) is a “dialectically pernicious” persuasive definition (cf. Williams 2015, 14).

Like persuasive definitions in general, it “masquerades as an honest assignment of meaning to a term while condemning or blessing with approval the subject matter of the definiendum” (Hurley 2015, 101). As I have pointed out in my (2017a), the problem with such definitions is that they “are strategies consisting in presupposing an unaccepted definition, taking a new unknowable description of meaning as if it were commonly shared” (Macagno and Walton 2014, 205).

As for Brown’s argument for the persuasive definition of Weak Scientism, according to which it “is a view that has its advocates putting too high a value on scientific knowledge” (Brown 2017b, 32), a key premise in this argument is the claim that there is a piece of philosophical knowledge that is better than scientific knowledge. This is premise 36 in Brown’s argument:

Some philosophers qua philosophers know that (a) true friendship is a necessary condition for human flourishing and (b) the possession of the moral virtues or a life project aimed at developing the moral virtues is a necessary condition for true friendship and (c) (therefore) the possession of the moral virtues or a life project aimed at developing the moral virtues is a necessary condition for human flourishing (see, e.g., the arguments in Plato’s Gorgias) and knowledge concerning the necessary conditions of human flourishing is better than any sort of scientific knowledge (see, e.g., St. Augustine’s Confessions, book five, chapters iii and iv) [assumption]

There is a lot to unpack here, but I will focus on what I take to be the points most relevant to the scientism debate. First, Brown assumes 36 without argument, but why think it is true? In particular, why think that (a), (b), and (c) count as philosophical knowledge? Brown says that philosophers know (a), (b), and (c) in virtue of being philosophers, but he does not tell us why that is the case.

After all, accounts of friendship, with lessons about the significance of friendship, predate philosophy (see, e.g., the friendship of Gilgamesh and Enkidu in The Epic of Gilgamesh). Did it really take Plato and Augustine to tell us about the significance of friendship? In fact, on Brown’s characterization of philosophy, namely, (P), (a), (b), and (c) do not count as philosophical knowledge at all, since Plato and Augustine did not publish in philosophy journals, were not academics with a Ph.D. in philosophy, and did not teach at public universities courses “with titles such as Introduction to Philosophy, Metaphysics, Epistemology, Normative Ethics, and Philosophy of Science” (Brown 2017b, 11).

Second, some philosophers, like Epicurus, need (and think that others need) friends to flourish, whereas others, like Diogenes of Sinope, need no one. For Diogenes, friends will only interrupt his sunbathing (Arrian VII.2). My point is not simply that philosophers disagree about the value of friendship and human flourishing. Of course they disagree.[5]

Rather, my point is that, in order to establish general truths about human beings, such as “Human beings need friends to flourish,” one must employ the methods of science, such as randomization and sampling procedures, blinding protocols, methods of statistical analysis, and the like; otherwise, one would simply commit the fallacies of cherry-picking anecdotal evidence and hasty generalization (Salmon 2013, 149-151). After all, the claim “Some need friends to flourish” does not necessitate, or even make more probable, the truth of “Human beings need friends to flourish.”[6]

Third, why think that “knowledge concerning the necessary conditions of human flourishing is better than any sort of scientific knowledge” (Brown 2017b, 32)? Better in what sense? Quantitatively? Qualitatively? Brown does not tell us. He simply declares it “self-evident” (Brown 2017b, 32). I take it that Brown would not want to argue that “knowledge concerning the necessary conditions of human flourishing” is better than scientific knowledge in the quantitative (i.e., in terms of research output and research impact) and qualitative (i.e., in terms of explanatory, instrumental, and predictive success) respects in which scientific knowledge is better than non-scientific knowledge, according to Weak Scientism.

If so, then in what sense exactly “knowledge concerning the necessary conditions of human flourishing” (Brown 2017b, 32) is supposed to be better than scientific knowledge? Brown (2017b, 32) simply assumes that without argument and without telling us in what sense exactly “knowledge concerning the necessary conditions of human flourishing is better than any sort of scientific knowledge” (Brown 2017b, 32).

Of course, philosophy does not have a monopoly on friendship and human flourishing as research topics. Psychologists and sociologists, among other scientists, work on friendship as well (see, e.g., Hojjat and Moyer 2017). To get an idea of how much research on friendship is done in scientific fields, such as psychology and sociology, and how much is done in philosophy, we can use a database like Web of Science.

Currently (03/29/2018), there are 12,334 records in Web of Science on the topic “friendship.” Only 76 of these records (0.61%) are from the Philosophy research area. Most of the records are from the Psychology (5,331 records) and Sociology (1,111) research areas (43.22% and 9%, respectively). As we can see from Figure 2, most of the research on friendship is done in scientific fields of study, such as psychology, sociology, and other social sciences.

Figure 2. Number of records on the topic “friendship” in Web of Science by research area (Source: Web of Science)

 

In terms of research impact, too, scientific knowledge about friendship is superior to philosophical knowledge about friendship. According to Web of Science, the average citations per year for Psychology research articles on the topic of friendship is 2826.11 (h-index is 148 and the average citations per item is 28.1), and the average citations per year for Sociology research articles on the topic of friendship is 644.10 (h-index is 86 and the average citations per item is 30.15), whereas the average citations per year for Philosophy research articles on friendship is 15.02 (h-index is 13 and the average citations per item is 8.11).

Quantitatively, then, psychological and sociological knowledge on friendship is better than philosophical knowledge in terms of research output and research impact. Both Psychology and Sociology produce significantly more research on friendship than Philosophy does, and the research they produce has significantly more impact (as measured by citation counts) than philosophical research on the same topic.

Qualitatively, too, psychological and sociological knowledge about friendship is better than philosophical knowledge about friendship. For, instead of rather vague statements about how “true friendship is a necessary condition for human flourishing” (Brown 2017b, 32) that are based on mostly armchair speculation, psychological and sociological research on friendship provides detailed explanations and accurate predictions about the effects of friendship (or lack thereof) on human well-being.

For instance, numerous studies provide evidence for the effects of friendships or lack of friendships on physical well-being (see, e.g., Yang et al. 2016) as well as mental well-being (see, e.g., Cacioppo and Patrick 2008). Further studies provide explanations for the biological and genetic bases of these effects (Cole et al. 2011). This knowledge, in turn, informs interventions designed to help people deal with loneliness and social isolation (see, e.g., Masi et al. 2010).[7]

To sum up, Brown (2017b, 32) has given no reasons to think that “knowledge concerning the necessary conditions of human flourishing is better than any sort of scientific knowledge.” He does not even tell us what “better” is supposed to mean here. He also ignores the fact that scientific fields of study, such as psychology and sociology, produce plenty of knowledge about human flourishing, both physical and mental well-being. In fact, as we have seen, science produces a lot more knowledge about topics related to human well-being, such as friendship, than philosophy does. For this reason, Brown (2017b, 32) has failed to show that “there is non-scientific form of knowledge better than scientific knowledge.”

Conclusion

At this point, I think it is quite clear that Brown and I are talking past each other on a couple of levels. First, I follow scientists (e.g., Weinberg 1994, 166-190) and philosophers (e.g., Haack 2007, 17-18 and Peels 2016, 2462) on both sides of the scientism debate in treating philosophy as an academic discipline or field of study, whereas Brown (2017b, 18) insists on thinking about philosophy as a personal activity of “individual intellectual progress.” Second, I follow scientists (e.g., Hawking and Mlodinow 2010, 5) and philosophers (e.g., Kidd 2016, 12-13 and Rosenberg 2011, 307) on both sides of the scientism debate in thinking about knowledge as the scholarly work or research produced in scientific fields of study, such as the natural sciences, as opposed to non-scientific fields of study, such as the humanities, whereas Brown insists on thinking about philosophical knowledge as personal knowledge.

To anyone who wishes to defend philosophy’s place in research universities alongside academic disciplines, such as history, linguistics, and physics, armed with this conception of philosophy as a “self-improvement” activity, I would use Brown’s (2017b, 30) words to say, “good luck with that project!” A much more promising strategy, I propose, is for philosophy to embrace scientific ways of knowing and for philosophers to incorporate scientific methods into their research.[8]

Contact details: mmizrahi@fit.edu

References

Arrian. “The Final Phase.” In Alexander the Great: Selections from Arrian, Diodorus, Plutarch, and Quintus Curtius, edited by J. Romm, translated by P. Mensch and J. Romm, 149-172. Indianapolis, IN: Hackett Publishing Company, Inc., 2005.

Ashton, Z., and M. Mizrahi. “Intuition Talk is Not Methodologically Cheap: Empirically Testing the “Received Wisdom” about Armchair Philosophy.” Erkenntnis (2017): DOI 10.1007/s10670-017-9904-4.

Ashton, Z., and M. Mizrahi. “Show Me the Argument: Empirically Testing the Armchair Philosophy Picture.” Metaphilosophy 49, no. 1-2 (2018): 58-70.

Cacioppo, J. T., and W. Patrick. Loneliness: Human Nature and the Need for Social Connection. New York: W. W. Norton & Co., 2008.

Cole, S. W., L. C. Hawkley, J. M. G. Arevaldo, and J. T. Cacioppo. “Transcript Origin Analysis Identifies Antigen-Presenting Cells as Primary Targets of Socially Regulated Gene Expression in Leukocytes.” Proceedings of the National Academy of Sciences 108, no. 7 (2011): 3080-3085.

Copi, I. M., C. Cohen, and K. McMahon. Introduction to Logic. Fourteenth Edition. New York: Prentice Hall, 2011.

Brogaard, B., and C. A. Pynes (eds.). “Overall Rankings.” The Philosophical Gourmet Report. Wiley Blackwell, 2018. Available at http://34.239.13.205/index.php/overall-rankings/.

Brown, C. M. “Some Objections to Moti Mizrahi’s ‘What’s So Bad about Scientism?’.” Social Epistemology Review and Reply Collective 6, no. 8 (2017a): 42-54.

Brown, C. M. “Defending Some Objections to Moti Mizrahi’s Arguments Scientism.” Social Epistemology Review and Reply Collective 7, no. 2 (2017b): 1-35.

Haack, S. Defending Science–within Reason: Between Scientism and Cynicism. New York: Prometheus Books, 2007.

Hawking, S., and L. Mlodinow. The Grand Design. New York: Bantam Books, 2010.

Hojjat, M., and A. Moyer (eds.). The Psychology of Friendship. New York: Oxford University Press, 2017.

Hurley, P. J. A Concise Introduction to Logic. Twelfth Edition. Stamford, CT: Cengage Learning, 2015.

Kelly, T. “Evidence.” In E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2016 Edition). https://plato.stanford.edu/archives/win2016/entries/evidence/.

Kidd, I. J. “How Should Feyerabend Have Defended Astrology? A Reply to Pigliucci.” Social Epistemology Review and Reply Collective 5 (2016): 11–17.

Kitcher, P. “A Plea for Science Studies.” In A House Built on Sand: Exposing Postmodernist Myths about Science, edited by N. Koertge, 32–55. New York: Oxford University Press, 1998.

Lewis, C. S. The Four Loves. New York: Harcourt Brace & Co., 1960.

Macagno, F., and D. Walton. Emotive Language in Argumentation. New York: Cambridge University Press, 2014.

Masi, C. M., H. Chen, and L. C. Hawkley. “A Meta-Analysis of Interventions to Reduce Loneliness.” Personality and Social Psychology Review 15, no. 3 (2011): 219-266.

Mizrahi, M. “Intuition Mongering.” The Reasoner 6, no. 11 (2012): 169-170.

Mizrahi, M. “More Intuition Mongering.” The Reasoner 7, no. 1 (2013a): 5-6.

Mizrahi, M. “What is Scientific Progress? Lessons from Scientific Practice.” Journal for General Philosophy of Science 44, no. 2 (2013b): 375-390.

Mizrahi, M. “New Puzzles about Divine Attributes.” European Journal for Philosophy of Religion 5, no. 2 (2013c): 147-157.

Mizrahi, M. “The Pessimistic Induction: A Bad Argument Gone Too Far.” Synthese 190, no. 15 (2013d): 3209-3226.

Mizrahi, M. “Does the Method of Cases Rest on a Mistake?” Review of Philosophy and Psychology 5, no. 2 (2014): 183-197.

Mizrahi, M. “On Appeals to Intuition: A Reply to Muñoz-Suárez.” The Reasoner 9, no. 2 (2015a): 12-13.

Mizrahi, M. “Don’t Believe the Hype: Why Should Philosophical Theories Yield to Intuitions?” Teorema: International Journal of Philosophy 34, no. 3 (2015b): 141-158.

Mizrahi, M. “Historical Inductions: New Cherries, Same Old Cherry-Picking.” International Studies in the Philosophy of Science 29, no. 2 (2015c): 129-148.

Mizrahi, M. “Three Arguments against the Expertise Defense.” Metaphilosophy 46, no. 1 (2015d): 52-64.

Mizrahi, M. “The History of Science as a Graveyard of Theories: A Philosophers’ Myth?” International Studies in the Philosophy of Science 30, no. 3 (2016): 263-278.

Mizrahi, M. “What’s So Bad about Scientism?” Social Epistemology 31, no. 4 (2017a): 351-367.

Mizrahi, M. “In Defense of Weak Scientism: A Reply to Brown.” Social Epistemology Review and Reply Collective 6, no. 11 (2017b): 9-22.

Mizrahi, M. “Introduction.” In The Kuhnian Image of Science: Time for a Decisive Transformation? Edited by M. Mizrahi, 1-22. London: Rowman & Littlefield, 2017c.

National Center for Education Statistics. “Bachelor’s degrees conferred by postsecondary institutions, by field of study: Selected years, 1970-71 through 2015-16.” Digest of Education Statistics (2017). https://nces.ed.gov/programs/digest/d17/tables/dt17_322.10.asp?current=yes.

Peels, R. “The Empirical Case Against Introspection.” Philosophical Studies 17, no. 9 (2016): 2461-2485.

Peels, R. “Ten Reasons to Embrace Scientism.” Studies in History and Philosophy of Science Part A 63 (2017): 11-21.

Rosenberg, A. The Atheist’s Guide to Reality: Enjoying Life Without Illusions. New York: W. W. Norton, 2011.

Rousseau, R., L. Egghe, and R. Guns. Becoming Metric-Wise: A Bibliometric Guide for Researchers. Cambridge, MA: Elsevier, 2018.

Salmon, M. H. Introduction to Logic and Critical Thinking. Sixth Edition. Boston, MA: Wadsworth, 2013.

Scimago Journal & Country Rank. “Subject Bubble Chart.” SJR: Scimago Journal & Country Rank. Accessed on April 3, 2018. http://www.scimagojr.com/mapgen.php?maptype=bc&country=US&y=citd.

Sinnott-Armstrong, W., and R. J. Fogelin. Understanding Arguments: An Introduction to Informal Logic. Eighth Edition. Belmont, CA: Wadsworth Cengage Learning, 2010.

Social Epistemology. “Aims and Scope.” Social Epistemology: A Journal of Knowledge, Culture and Policy (2018). https://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=tsep20.

Weinberg, S. Dreams of a Final Theory: The Scientist’s Search for the Ultimate Laws of Nature. New York: Random House, 1994.

Williams, R. N. “Introduction.” In Scientism: The New Orthodoxy, edited by R. N. Williams and D. N. Robinson, 1-22. New York: Bloomsbury Academic, 2015.

Yang, C. Y., C. Boen, K. Gerken, T. Li, K. Schorpp, and K. M. Harris. “Social Relationships and Physiological Determinants of Longevity Across the Human Life Span.” Proceedings of the National Academy of Sciences 113, no. 3 (2016): 578-583.

[1] I thank Adam Riggio for inviting me to respond to Brown’s second attack on Weak Scientism.

[2] On why appeals to intuition are bad arguments, see Mizrahi (2012), (2013a), (2014), (2015a), (2015b), and (2015d).

[3] I use friendship as an example here because Brown (2017b, 31) uses it as an example of philosophical knowledge. I will say more about that in Section 6.

[4] For more on paradoxes involving the divine attributes, see Mizrahi (2013c).

[5] “Friendship is unnecessary, like philosophy, like art, like the universe itself (for God did not need to create)” (Lewis 1960, 71).

[6] On fallacious inductive reasoning in philosophy, see Mizrahi (2013d), (2015c), (2016), and (2017c).

[7] See also “The Friendship Bench” project: https://www.friendshipbenchzimbabwe.org/.

[8] For recent examples, see Ashton and Mizrahi (2017) and (2018).

Author Information: Gabriel Vélez-Cuartas, Universidad de Antioquia, gjaime.velez@udea.edu.co

Vélez-Cuartas, Gabriel. “Invisible Colleges 2.0: Eponymy as a Scientometric Tool.” Social Epistemology Review and Reply Collective 7, no. 3 (2018): 5-8.

Please refer to:

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3Vd

The corridors of an invisible college. Image from Justin Kern via Flickr / Creative Commons

 

Merton’s idea of eponymy as a prize for scientists, perhaps the most great of incentives, relatively addressed for a few ones, is revisited in the text from Collazo et al. An idea exposed nearly as a footnote in Merton’s Sociology of Science let open in this text two ideas that can be amplified as opportunities to go a step further in understanding scientific dynamics: (1) The idea of a literary figure as catalyzer of cognitive evolution of scientific communities; (2) the claims for geographical priority to show relevance in the hierarchy of science structures.

Faculty of the Invisible Colleges

(1) Derek de Solla Price (1963) and Diane Crane (1972) developed in the sixties and seventies of the last century the idea of invisible colleges. Those invisible colleges merged the idea of scientific growth due to chained interactions that made possible diffusion of innovations in cycles of exponential and linear growth. This statistic idea of growth has been related to the idea of paradigmatic revolutions in Kuhn’s ideas. These interactions determined the idea of a cognitive dynamic expressed in networks of papers linked by common references in Crane and De Solla Price. In other words, knowledge growth is possible because there are forms of interactions that make possible the construction of communities.

This idea has not evolved in time and appears in different works as: institutionalized communities combining co-authorship networks and citation indexes (Kretschermer 1994), social networks of supervisors, students and co-workers (Verspagen and Werker 2003; Brunn and O’Lear 1999; cultural circles (Chubin 1985); collaboration networks and preferential attachment (Verspagen and Werker 2004; Zuccala 2006).

More recently, the cognitive dynamic related to the other side of the definition of invisible colleges have been some advances focused on detecting cognitive communities. For instance, studies of bibliographic coupling based on similarity algorithms (Leydesdorff 2008; Colliander and Ahlgren 2012; Steinert and Hoppe 2017; Ciotti et al. 2016); hybrid techniques mixing different similarity measures, modularity procedures, and text- and citation-based analysis (Glänzel and Thijs 2017); and the explicit merge made by Van Raan (2014), he proposes a bibliometric analysis mixing co-word analysis, co-citation, and bibliographic coupling to describe invisible colleges dynamics.

Those advances in analysis claim for a transformation of the concept of invisible colleges. The determination of cognitive dynamics by interactions is on the shell. Indeed, different levels of hierarchies and determinations in multilayer networks are arising. This means that collaboration networks can be seen as local interactions embedded in a more global set of relationships shaped by all kind of scientific communications chained in networks of references (Luhmann, 1996).

Eponymy in scientific communication gives a sign of these dynamics. We agree that in the first level of interactions eponymy can describe prestige dynamics, accumulation of social or scientific capital as Bourdieu can describe in his theory of fields. Nevertheless, in a global context of the scientific system, Eponymy acts as a code that catalyzes communication functions in the scientific production. Different programs emerge from the mention of Jerzy Plebanski in the literature (the eponym analyzed within the text from Collazo et al), nevertheless is a common sign for all this communities. The eponymy gives a kind of confidence, content to be trusted and the scientific small masses confirm that by the grace of redundancy. Prestige becomes a communication function, more important than a guide for address the interaction.

How the Eponym Stakes an Invisible College’s Claim

(2) In this direction, the eponym appears as a rhetoric strategy in a semantic context of a determined scientific area, a partial system within the scientific form to communicate debates, controversies and research results. The geographical issue disappears in a way for this system. Cognitively, Jerzy Plebanski is a physicist; a geographical claim for the contributions seems distant to the discussion about the formation of invisible colleges or scientific communities.

Nevertheless, there are two underlying dynamics related to the space as category. One is the outlined dynamic of diffusion of knowledge. The eponym made itself stronger as a figure as can be redundant in many places. Diffusion is related here with dispersion. The strength of eponymy is due to the reach of dispersion that have emerged from redundancy of his name in different global spaces. It means penetration too.

The second is that scientific communities are locally situated and they are possible due to an economic and political context. It can be said that a scientific system needs roots on contexts that facilitate a scientific ethos. The modern expansion through colonies around the world left as a legacy the scientific way as a social function installed in almost every culture. But the different levels of institutional development affect the formation of local scientific communities conditioned by: the struggle between economic models based or non-based on scientific and technological knowledge (Arocena & Sutz, 2013); cultural coloniality (Quijano, 2007); the openness of science and the concentration of knowledge in private companies as part of a regime of intellectual property (Vélez Cuartas et al, 2018).

In other words, the claim for the work of Jerzy Plebanski as a Mexican and the appearance of eponym in Latin American lands borne as an exclamation. The acknowledgement of Latin American science is a kind of reaffirmation. In logic of scientific system observed from the Global North it seems a trivial issue, where a dictionary of scientific eponyms can list more than 9,000 renamed scientists. The geographical issue plays in two sides to comprehend this dynamic: from one side, the penetration of a global scientific form of communication, that is expansion of the system. This means growing of cognitive capacities, growth of collective intelligence under the ethos of science. Locally, express conditions of possibility of appearance of scientific communities and their consolidation.

The eponymy appears not as signal of prestige but as indicator of scientific growing as form of organization and specialization. Although Plebanski is a foreign last name, the possibility to stay there, to develop his work within that place, and to reach a symbolic status in a semantic community that is organized in a network of meaning around his work, express self-organization dynamics of science. Then eponym not only gives a function to indicate prestige, shows a geographical penetration of scientific institutions and global dynamics of scientific systems.

The work of Collazo et al shows an important step to induce analysis on other areas of sociology of science and social epistemology. Introduce the rhetoric figures as a cybernetic instrument that make able to observe systemic possibilities of scientific community formation. Eponymy as a Scientometric tool sounds good as a promising methodology.

Contact details: gjaime.velez@udea.edu.co

References

Arocena, R., & Judith Sutz. (2013). Innovación y democratización del conocimiento como contribución al desarrollo inclusivo. In Sistemas de Innovación para un Desarrollo Inclusivo: la experiencia latinoamericana (pp. 19–34). México, D.F: Foro Consultivo Científico y Tecnológico AC. Retrieved from https://www.researchgate.net/publication/301805107_Ciencia_tecnologia_e_innovacion_para_un_desarrollo_inclusivo_en_Colombia

Brunn, S. D., & O’Lear, S. R. (1999). Research and communication in the “invisible college” of the Human Dimensions of Global Change, 9, 285–301. doi:10.1016/S0959-3780(99)00023-0

Chubin, D. E. (1985). Beyond invisible colleges: Inspirations and aspirations of post-1972 social studies of science. Scientometrics, 7, 221–254. doi:10.1007/BF02017148

Ciotti, V., Bonaventura, M., Nicosia, V., Panzarasa, P., & Latora, V. (2016). Homophily and missing links in citation networks. EPJ Data Science, 5(1). doi:10.1140/epjds/s13688-016-0068-2

Colliander, C., & Ahlgren, P. (2012). Experimental comparison of first and second-order similarities in a scientometric context. Scientometrics, 90(2), 675–685. doi:10.1007/s11192-011-0491-x

Crane, D. (1972). Invisible colleges: Diffusion of knowledge in scientific communities. Chicago & London: The university of Chicago Press. ISBN: 0-226-11857-6

De Solla Price, D (1963). Little Science, Big Science. Columbia University Press, New York. ISBN: 0-231-04957-9

Glänzel, W., & Thijs, B. (2017). Using hybrid methods and “core documents” for the representation of clusters and topics: the astronomy dataset. Scientometrics, 111(2), 1071–1087. doi:10.1007/s11192-017-2301-6

Kretschmer, H. (1994). Coauthorship networks of invisible-colleges and institutionalized communities. Scientometrics, 30(1), 363–369. doi:10.1007/BF02017234

Leydesdorff, L. (2008). On the normalization, and visualization of author cocitation data: Salton’s cosine versus the jaccard index. Journal of the American Society for Information Science and Technology, 59 (1), pp. 77-85. doi: 10.1002/asi.20732

Luhmann, Niklas (1996). La ciencia de la sociedad. Rubí: Anthropos. ISBN: 9788476584910

Quijano, A. Coloniality and Modernity/Rationality. Cultural Studies 21 (2-3) (March/May 2007): 168–178.

Steinert, L., & Hoppe, H. U. (2017). A comparative analysis of network-based similarity measures for scientific paper recommendations. In Proceedings – 2016 3rd European Network Intelligence Conference, ENIC 2016 (pp. 17–24). Institute of Electrical and Electronics Engineers Inc., doi:10.1109/ENIC.2016.011

Van Raan, A. F. J. (2014). Advances in bibliometric analysis: research performance assessment and science mapping. In: W. Blockmans, L. Engwall, D. Weaire (eds.). Bibliometrics: Use and Abuse in the Review of Research Performance. Wenner-Gren International Series Vol. 87. (pp.17-28). London: Portland Press Ltd., ISBN: 9781855781955.

Vélez Cuartas, G (2018). Validación y evaluación en las ciencias sociales y humanas. En: Vélez Cuartas, G; Aristizábal, C; Piazzini, C; Villega, L; Vélez Salazar, G; Masías Nuñez, R (EDS). Investigación en ciencias sociales, humanidades y artes. Debates para su valoración. Medellín: Universidad de Antioquia, Universidad de los Andes,  pp 91-182. ISBN: 978-958-5413-60-3

Verspagen, B. B., & Werker, C. (2003). The Invisible College of The Economics of Innovation and Technological Change. Estudios de Economía Aplicada, diciembre, 393-419. Retrieved from http://www.redalyc.org/articulo.oa?id=30121301. Accessed 25 January 2017.

Verspagen, B. B., & Werker, C. (2004). Keith Pavitt and the Invisible College of the Economics of Technology and Innovation. Research Policy, 33, 1419–1431. doi:10.1016/j.respol.2004.07.010

Zuccala, A. (2006). Modeling the invisible college. Journal of the Association for Information Science and Technology, 57, 152–168. doi:10.1002/asi.20256