Archives For scientific communication

Author Information: Robin McKenna, University of Liverpool, r.j.mckenna@liverpool.ac.uk.

McKenna, Robin. “McBride on Knowledge and Justification.” Social Epistemology Review and Reply Collective 7, no. 9 (2018): 53-59.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-417

Image by Ronan Shahnav via Flickr / Creative Commons

 

I would like to thank the editors of the Social Epistemology Review and Reply Collective for giving me the opportunity to review Mark McBride’s rich and rewarding book. To begin, I will give a—fairly high-level—overview of its contents. I will then raise some concerns and make some (mildly) critical comments.

Overview

The book is split into two parts. Part 1 concerns the issue of basic knowledge (and justification), whereas the second concerns (putative necessary) conditions on knowledge (specifically, conclusive reasons, sensitivity and safety conditions). We can start with Part 1. As McBride defines it, basic knowledge is “knowledge (or justification) which is immediate, in the sense that one’s justification for the known proposition doesn’t rest on any justification for believing other propositions” (p. 1).

Two central issues in Part 1 are (i) what, exactly, is wrong with Moore’s “proof” of the external world (Chapter 1) (ii) what, exactly, is wrong with inferences that yield “easy knowledge” (Chapters 2-3). Take these arguments, which for ease of reference I’ll call MOORE and EASY-K respectively:

MOORE:

(Visual appearance as of having hands).
1-M. I have hands.
2-M. If I have hands, an external world exists.
3-M. An external world exists.

EASY-K:

(Visual appearance as of a red table).
1-EK. The table is red.
2-EK. If the table is red, then it is not white with red lights shining on it.
3-EK. The table is not white with red lights shining on it.

It seems like a visual appearance as of having hands can give one knowledge of 1-M, and 2-M seems to be knowable a priori. But it seems wrong to hold that one can thereby come to know 3-M. (And mutatis mutandis for EASY-K and 3-EK).

I want to single out three of McBride’s claims about MOORE and EASY-K. First, it is commonly taken that “dogmatist” responses to MOORE (such as Pryor 2000) are at a disadvantage with respect to “conservative” responses (such as Wright 2004). The dogmatist holds that having a visual appearance as of hands provides immediate warrant for 1-M, whereas the conservative holds that one can have warrant for 1-M only if one has a prior entitlement to accept 3-M. Thus the dogmatist seems forced to accept that warrant can “transmit” from the premises of MOORE to the conclusion, whereas the conservative can deny that warrant transmission occurs.

In Chapter 1 McBride turns this on its head. First, he argues that, while a conservative such as Crispin Wright can maintain that the premises of MOORE don’t transmit “non-evidential” warrant to the conclusion, he must allow that “evidential” warrant does transmit from the premises to the conclusion. Second, he argues that Wright cannot avail himself of what McBride (following Davies 2004) takes to be a promising diagnosis of the real problem with MOORE. According to Martin Davies, MOORE is inadequate because it is of no use in the epistemic project of settling the question whether the external world exists. But, for Wright, there can be no such project, because the proposition that the external world exists is the “cornerstone” on which all epistemic projects are built.

Second, in Chapter 3 McBride seeks to show that the dogmatist can supplement Davies’ account of the problem with Moore’s proof in order to diagnose the problem with EASY-K. According to McBride, EASY-K is problematic not just in that it is of no use in settling the question whether the table is not white with red lights shining on it, but also in that there are all sorts of ways in which one could settle this question (e.g. by investigating the lighting sources surrounding the table thoroughly).

Thus, EASY-K is problematic in a way that MOORE isn’t: while one could avail oneself of a better argument for the conclusion of EASY-K, it is harder to see what sort of argument could improve on MOORE.

Third, while Part 1 is generally sympathetic to the dogmatist position, Chapter 5 argues that the dogmatist faces a more serious problem. The reader interested in the details of the argument should consult Chapter 5. Here, I just try to explain the gist. Say you endorse a closure principle on knowledge like this:

CLOSURE: Necessarily, if S knows p, competently deduces q from p, and thereby comes to believe q, while retaining knowledge of p throughout, then S knows q (p. 159).

It follows that, if one comes to know 1-EK (the table is red) by having an appearance as of a red table, then competently deduces 3-EK (the table is not white with red lights shining on it) from 1-EK while retaining knowledge of 1-EK, then one knows 3-EK. But—counter-intuitively—having an appearance as of a red table can lower the credence one ought to have in 3-EK (see pp. 119-20 for the reason why).

It therefore seems inarguable that, if you are in a position to know 3-EK after having the appearance, you must have been in a position to know the 3-EK prior to the appearance. So it seems like the conservative position must be right after all. In order for your appearance as of a red table to furnish knowledge that there is a red table you must have been in a position to know that the table was not white with red lights shining on it prior to having the appearance as of a red table.

The second part of McBride’s book concerns putative (necessary) conditions on knowledge, in particular conclusive reasons (Chapter 6), sensitivity (Chapter 7) and safety (Chapter 8). McBride dedicates a chapter to each condition; the book finishes with a (brief) application of safety to legal knowledge (Chapter 9). While most epistemologists tend to argue that either sensitivity or (exclusive) safety are a (necessary) condition on knowledge, McBride provides a (qualified) defense of both.

In the case of sensitivity, this is in part because, if sensitivity were a condition on knowledge, then—as Nozick (1981) famously held—CLOSURE would be false, and so the argument against dogmatism (about knowledge) in Chapter 5 would be disarmed. Because of the centrality of sensitivity to the argument in Part 1, and because the chapters on conclusive reasons and sensitivity revolve around similar issues, I focus on sensitivity in what follows.

Here is an initial statement of sensitivity:

SENSITIVITY: S knows p only if S sensitively believes p, where S sensitively believes p just in case, were p false, S would not believe p (p. 160).

Chapter 7 (on sensitivity) is largely concerned with rebutting an objection from John Hawthorne (2004) to the effect that the sensitivity theorist must also reject these two principles:

EQUIVALENCE: If you know a priori that p and q are equivalent and you know p, then you are in a position to know q.

DISTRIBUTION: If one knows p and q, then one is in a position to know p and to know q.

Suppose I have an appearance as of a zebra. So I know:

(1) That is a zebra.

By EQUIVALENCE I can know:

(2) That is a zebra and that is not a cleverly disguised mule.

So by DISTRIBUTION I can know:

(3) That is not a cleverly disguised mule.

But, by SENSITIVITY, while I can know (1), I can’t know (3) because, if I were looking at a cleverly disguised mule, I would still believe I was looking at a zebra. Hawthorne concludes that the sensitivity theorist must deny a range of plausible principles, not just CLOSURE.

McBride’s basic response is that, while SENSITIVITY is problematic as stated, it can be modified in such a way that the sensitivity-theorist can deny EQUIVALENCE but keep DISTRIBUTION. More importantly, this rejection of EQUIVALENCE can be motivated on the grounds that initially motivate SENSITIVITY. Put roughly, the idea is that simple conjunctions like (4) already cause problems for SENSITIVITY:

(4) I have a headache and I have all my limbs.

Imagine you form the belief in (4) purely from your evidence of having a headache (and don’t worry about how this might be possible). While you clearly don’t know (4), your belief does satisfy SENSITIVITY, because, if (4) were false, you wouldn’t still believe it (if you didn’t have a headache, you wouldn’t believe you did, and so you wouldn’t believe (4)).

The underlying problem is that SENSITIVITY tells you to go the nearest possible world in which the relevant belief is false and asks what you believe there, but a conjunctive belief is false so long as one of the conjuncts is false, and it might be that one of the conjuncts is false in a nearby possible world, whereas the other is false in a more distant possible world. So the sensitivity theorist needs to restrict SENSITIVITY to atomic propositions and add a new condition for conjunctive propositions:

SENSITIVITY*: If p is a conjunctive proposition, S knows p only if S believes each of the conjuncts of p sensitively (p. 167).

If we make this modification, the sensitivity theorist now has an independent reason to reject EQUIVALENCE, but is free to accept DISTRIBUTION.

Critical Discussion

While this only touches on the wealth of topics discussed in McBride’s book, I will now move on to the critical discussion. I will start by registering two general issues about the book. I will then develop two criticisms in a little more length, one for each part of the book.

First, while the book makes compelling reading for those already versed in the literatures on transmission failure, easy knowledge and modal conditions on knowledge, the central problematics are rarely motivated at any length. Moreover, while McBride does draw numerous (substantive) connections between the chapters, the book lacks a unifying thesis. All this to say: This is maybe more of a book for the expert than the novice. But the expert will find a wealth of interesting material to chew over.

Second, readers of the Collective might find the individualism of McBride’s approach striking. McBride is almost exclusively concerned with the epistemic statuses of individuals’ beliefs, where those beliefs are formed through simple processes like perception and logical inference. The one part of the book that does gesture in a more social direction (McBride’s discussion of epistemic projects, and the dialectical contexts in which they are carried out) is suggestive, but isn’t developed in much detail.

Turning now to more substantive criticisms, in Part 1 McBride leans heavily on Davies’ solution to the problem with MOORE. I want to make two comments here. First, it is natural to interpret Davies’ solution as an inchoate form of contextualism (DeRose 1995; Lewis 1996): whether MOORE (and EASY-K?) transmits warrant to its conclusion depends on the context in which one runs the inference, in particular, the project in which one is engaged.

This raises a host of questions. For example: does McBride hold that, if we keep the context (project) fixed, no transmission failure occurs? That is: if we’re working with the (easier) project of deciding what to believe, does an instance of MOORE transmit warrant from premises to conclusion? If so, then if we’re working with the (harder) project of settling the question, does an instance of MOORE fail to transmit warrant? (This would fit with the more general contextualist line in response to the skeptical problem, so this is only a request for clarification).

Second, and more importantly, we need to distinguish between the project of fully settling the question whether p and the project of partially settling the question whether p. Let’s grant McBride (and Davies) that someone who runs through an instance of MOORE has not fully settled the question whether there is an external world. But why think that—at least by the dogmatist’s lights—they haven’t partially settled the question? If dogmatism is true, then having the appearance as of a hand provides immediate warrant for believing that one has a hand, and so, via MOORE, for believing that there is an external world.

McBride (like many others) finds this conclusion unpalatable, and he invokes the distinction between the project of deciding what to believe and the project of settling the question in order to avoid it. But this distinction is overly simplistic. We can settle questions for different purposes, and with different degrees of stability (cf. “the matter is settled for all practical purposes”). The dogmatist seems forced to allow that MOORE is perfectly good for settling the question of whether there is an external world for a range of projects, not just one.

(I have a parallel worry about the solution to the problem of easy knowledge. Let’s grant McBride that one problem with EASY-K is that there are far better ways of trying to establish that the table is not white but bathed in red light. But why think that—at least by the dogmatist’s lights—it isn’t a way of trying to establish this? To point out that there are better ways of establishing a conclusion is not yet to show that this particular way is no way at all of establishing the conclusion).

Finally, in his response to Hawthorne’s objection to the sensitivity theorist McBride is at pains to show that his modification of SENSITIVITY isn’t ad hoc. To my mind, he does an excellent job of showing that the sensitivity theorist should reject EQUIVALENCE for reasons entirely independent of Hawthorne’s objection.

This suggests (at least to me) that the problem is not one of ad hocness, but rather that sensitivity theorists are forced to endorse a wide range of what Keith DeRose (1995) calls “abominable conjunctions” (cf. “I know that I have hands, but I don’t know that I’m not a handless brain in a vat”). DeRose’s own response to this problem is to embed something like SENSITIVITY in a contextualist theory of knowledge attributions. DeRose proposes the following “rule”:

Rule of Sensitivity: When it’s asserted that S knows (or doesn’t know) p, then, if necessary, enlarge the sphere of epistemically relevant worlds so that it at includes the closest worlds in which p is false (cf 1995, 37).

His idea is that, when the question of whether S knows p becomes a topic of conversation, we expand the range of worlds in which S’s belief must be sensitive. Imagine I assert “I know that I have hands”. In order for this assertion to be true, it must be the case that, if I didn’t have hands, I wouldn’t believe that I did.

But now imagine I assert “I know that I’m not a handless brain in a vat”. In order for this new assertion to be true, it must be the case that, if I were a handless brain in a vat, I wouldn’t believe that I wasn’t. Plausibly, this will not be the case, so I can’t truly assert “I know that I’m not a handless brain in a vat”. But no abominable conjunction results, because I can no longer truly assert “I know that I have hands” either.

My suggestion is that, if McBride were to adopt DeRose’s contextualist machinery, he would not only have a way of responding to the problem of abominable conjunctions, but also an interesting modification to DeRose’s “rule of sensitivity”.

For note that DeRose’s rule seems subject to the same problem McBride sees with SENSITIVITY: when I assert “I have a headache and I have all my limbs” we only need to expand the range of worlds to include worlds in which I don’t have a headache, and so my assertion will remain true in the updated context created by my assertion. Further, adopting this suggestion would furnish another link between Part 1 and Part 2: solving the problem of basic knowledge and formulating a satisfactory sensitivity condition both require adopting a contextualist theory of knowledge attributions.

Contact details: r.j.mckenna@liverpool.ac.uk

References

Davies, Martin. 2004. ‘Epistemic Entitlement, Warrant Transmission and Easy Knowledge’. Aristotelian Society Supplementary Volume 78 (1): 213–245.

DeRose, Keith. 1995. ‘Solving the Skeptical Problem’. Philosophical Review 104 (1): 1–52.

Hawthorne, John. 2004. Knowledge and Lotteries. Oxford University Press.

Lewis, David. 1996. ‘Elusive Knowledge’. Australasian Journal of Philosophy 74 (4): 549–67.

Nozick, Robert. 1981. Philosophical Explanations. Harvard University Press.

Pryor, James. 2000. ‘The Skeptic and the Dogmatist’. Noûs 34 (4): 517–549.

Wright, Crispin. 2004. ‘Warrant for Nothing (and Foundations for Free)?’ Aristotelian Society Supplementary Volume 78 (1): 167–212.

Author Information: Moti Mizrahi, Florida Institute of Technology, mmizrahi@fit.edu.

Mizrahi, Moti. “Why Scientific Knowledge Is Still the Best.” Social Epistemology Review and Reply Collective 7, no. 9 (2018): 18-32.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-40I

For context, see also:

Image by Specious Reasons via Flickr / Creative Commons

 

It is common knowledge among scholars and researchers that the norms of academic research dictate that one must enter an academic conversation by properly acknowledging, citing, and engaging with the work done by other scholars and researchers in the field, thereby showing that a larger conversation is taking place.[1] See, for example, Graff and Birkenstein (2018, 1-18) on “entering the conversation.” Properly “entering the conversation” is especially important when one aims to criticize the work done by other scholars and researchers in the field.

In my previous reply to Bernard Wills’ attack on Weak Scientism (Wills 2018a), I point out that Wills fails in his job as a scholar who aims to criticize work done by other scholars and researchers in the field (Mizrahi 2018b, 41), since Wills does not cite or engage with the paper in which I defend Weak Scientism originally (Mizrahi 2017a), the very thesis he seeks to attack. Moreover, he does not cite or engage with the papers in my exchange with Christopher Brown (Mizrahi 2017b; 2018a), not to mention other works in the literature on scientism.

In his latest attack, even though he claims to be a practitioner of “close reading” (Wills 2018b, 34), it appears that Wills still has not bothered to read the paper in which I defend the thesis he seeks to attack (Mizrahi 2017a), or any of the papers in my exchange with Brown (Mizrahi 2017b; 2018a), as evidenced by the fact that he does not cite them at all. To me, these are not only signs of lazy scholarship but also an indication that Wills has no interest in engaging with my arguments for Weak Scientism in good faith. For these reasons, this will be my second and final response to Wills. I have neither the time nor the patience to debate lazy scholars who argue in bad faith.

On the Quantitative Superiority of Scientific Knowledge

In response to my empirical data on the superiority of scientific knowledge over non-scientific knowledge in terms of research output and research impact (Mizrahi 2017a, 357-359; Mizrahi 2018a, 20-22; Mizrahi 2018b, 42-44), Wills (2018b, 34) claims that he has “no firm opinion at all as to whether the totality of the sciences have produced more ‘stuff’ than the totality of the humanities between 1997 and 2017 and the reason is that I simply don’t care.”

I would like to make a few points in reply. First, the sciences produce more published research, not just “stuff.” Wills’ use of the non-count noun ‘stuff’ is misleading because it suggests that research output cannot be counted or measured. However, research output (as well as research impact) can be counted and measured, which is why we can use this measure to determine that scientific research (or knowledge) is better than non-scientific research (or knowledge).

Second, my defense of Weak Scientism consists of a quantitative argument and a qualitative argument, thereby showing that scientific knowledge is superior to non-scientific knowledge both quantitatively and qualitatively, which are the two ways in which one thing can be said to be better than another (Mizrahi 2017a, 354). If Wills really does not care about the quantitative argument for Weak Scientism, as he claims, then why is he attacking my defense of Weak Scientism at all?

After all, showing that “scientific knowledge is [quantitatively] better – in terms of research output (i.e. more publications) and research impact (i.e. more citations) – than non-scientific knowledge” is an integral part of my defense of Weak Scientism (Mizrahi 2017a, 358). To know that, however, Wills would have to read the paper in which I make these arguments for Weak Scientism (Mizrahi 2017a). In his (2018a) and (2018b), I see no evidence that Wills has read, let alone read closely, that paper.

Third, for someone who says that he “simply [doesn’t] care” about quantity (Wills 2018b, 34), Wills sure talks about it a lot. For example, Wills claims that a “German professor once told [him] that in the first half of the 20th Century there were 40,000 monographs on Franz Kafka alone!” (Wills 2018a, 18) and that “Shakespeare scholars have all of us beat” (Wills 2018a, 18). Wills’ unsupported claims about quantity turn out to be false, of course, as I show in my previous reply (Mizrahi 2018b, 42-44). Readers will notice that Wills does not even try to defend those claims in his (2018b).

Fourth, whether Wills cares about quantity or has opinions on the matter is completely beside the point. With all due respect, Wills’ opinions about research output in academic disciplines are worthless, especially when we have data on research output in scientific and non-scientific disciplines. The data show that scientific disciplines produce more research than non-scientific disciplines and that scientific research has a greater impact than non-scientific research (Mizrahi 2017a, 357-359; Mizrahi 2018a, 20-22; Mizrahi 2018b, 42-44).

Wills (2018b, 35) thinks that the following is a problem for Weak Scientism: “what if it were true that Shakespeare scholars produced more papers than physicists?” (original emphasis) Lacking in good arguments, as in his previous attack on Weak Scientism, Wills resorts to making baseless accusations and insults, calling me “an odd man” for thinking that literature would be better than physics in his hypothetical scenario (Wills 2018b, 35). But this is not a problem for Weak Scientism at all and there is nothing “odd” about it.

What Wills fails to understand is that Weak Scientism is not supposed to be a necessary truth. That is, Weak Scientism does not state that scientific knowledge must be quantitatively and qualitatively better than non-scientific knowledge. Rather, Weak Scientism is a contingent fact about the state of academic research. As a matter of fact, scientific disciplines produce better research than non-scientific disciplines do.

Moreover, the data we have (Mizrahi 2017a, 357-359; Mizrahi 2018a, 20-22; Mizrahi 2018b, 42-44) give us no reason to think that these trends in research output and research impact are likely to change any time soon. Of course, if Wills had read my original defense of Weak Scientism (Mizrahi 2017a), and my replies to Brown, he would have known that I have discussed all of this already (Mizrahi 2017b, 9-10; 2018a, 9-13).

Likewise, contrary to what Wills (2018b, 36, footnote 2) seems to think, there is nothing odd about arguing for a thesis according to which academic research produced by scientific disciplines is superior to academic research produced by non-scientific disciplines, “while leaving open the question whether non-scientific knowledge outside the academy may be superior to science” (original emphasis). If Wills were familiar with the literature on scientism, he would have been aware of the common distinction between “internal scientism” and “external scientism.”

See, for example, Stenmark’s (1997, 16-18) distinction between “academic-internal scientism” and “academic-external scientism” as well as Peels (2018, 28-56) on the difference between “academic scientism” and “universal scientism.” Again, a serious scholar would have made sure that he or she is thoroughly familiar with the relevant literature before attacking a research paper that aims to make a contribution to that literature (Graff and Birkenstein 2018, 1-18).

Wills also seems to be unaware of the fact that my quantitative argument for Weak Scientism consists of two parts: (a) showing that scientific research output is greater than non-scientific research output, and (b) showing that the research impact of scientific research is greater than that of non-scientific research (Mizrahi 2017a, 356-358). The latter is measured, not just by publications, but also by citations. Wills does not address this point about research impact in his attacks on Weak Scientism. Since he seems to be proud of his publication record, for he tells me I should search for his published papers on Google (Wills 2018b, 35), let me to illustrate this point about research impact by comparing Wills’ publication record to a colleague of his from a science department at his university.

According to Google Scholar, since completing his doctorate in Religious Studies at McMaster University in 2003, Wills has published ten research articles (excluding book reviews). One of his research articles was cited three times, and three of his research articles were cited one time each. That is six citations in total.

On the other hand, his colleague from the Physics program at Memorial University, Dr. Svetlana Barkanova, has published 23 research articles between 2003 and 2018, and those articles were cited 53 times. Clearly, in the same time, a physicist at Wills’ university has produced more research than he did (130% more research), and her research has had a greater impact than his (783% more impact). As I have argued in my (2017a), this is generally the case when research produced by scientific disciplines is compared to research produced by non-scientific disciplines (Table 1).

Table 1. H Index by subject area, 1999-2018 (Source: Scimago Journal & Country Rank)

H Index
Physics 927
Psychology 682
Philosophy 161
Literature 67

Reflecting on One’s Own Knowledge

In his first attack on Weak Scientism, Wills (2018a, 23) claims that one “can produce a potential infinity of knowledge simply by reflecting recursively on the fact of [one’s] own existence.” In response, I pointed out that Wills (2018a, 23) himself admits that this reflexive procedure applies to “ANY fact” (original capitalization), which means that it makes no difference in terms of the quantity of knowledge produced in scientific versus non-scientific disciplines.

As I have come to expect from him, Wills (2018b, 35) resorts to name-calling again, rather than giving good arguments, calling my response “sophism,” but he seems to miss the basic logical point, even though he admits again that extending one’s knowledge by reflexive self-reflection “can be done with any proposition at all” (Wills 2018b, 35). Of course, if “it can be done with any proposition at all” (Wills 2018b, 35; emphasis added), then it can be done with scientific propositions as well, for the set of all propositions includes scientific propositions.

To illustrate, suppose that a scientist knows that p and a non-scientist knows that q. Quantitatively, the amount of scientific and non-scientific knowledge is equal in this instance (1 = 1). Now the scientist reflects on her own knowledge that p and comes to know that she knows that p, i.e., she knows that Kp. Similarly, the non-scientist reflects on her knowledge that q and comes to know that she knows that q, i.e., she knows that Kq. Notice that, quantitatively, nothing has changed, i.e., the amount of scientific versus non-scientific knowledge is still equal: two items of scientific knowledge (p and Kp) and two items of non-scientific knowledge (q and Kq).

Wills might be tempted to retort that p may be an item of scientific knowledge but Kp is not because it is not knowledge that is produced by scientific procedures. However, if Wills were to retort in this way, then it would be another indication of sloppy scholarship on his part. In my original paper (Mizrahi 2017a, 356), and in my replies to Brown (Mizrahi 2017b, 12-14; Mizrahi 2018a, 14-15), I discuss at great length my characterization of disciplinary knowledge as knowledge produced by practitioners in the field. I will not repeat those arguments here.

Baseless Accusations of Racism and Colonialism

After raising questions about whether I am merely rationalizing my “privilege” (Wills 2018a, 19), Wills now says that his baseless accusations of racism and colonialism are “not personal” (Wills 2018b, 35). His concern, Wills (2018b, 35) claims, is “systemic racism” (original emphasis). As a white man, Wills has the chutzpah to explain (or white-mansplain, if you will) to me, an immigrant from the Middle East, racism and colonialism.

My people were the victims of ethnic cleansing and genocide, lived under British colonial rule, and are still a persecuted minority group. Since some of my ancestors died fighting the British mandate, I do not appreciate using the term ‘colonialism’ to describe academic disputes that are trifle in comparison to the atrocities brought about by racism and colonialism.

Perhaps Wills should have used (or meant to use) the term ‘imperialism’, since it is sometimes used to describe the expansion of a scientific theory into new domains (Dupré 1994). This is another sign of Wills’ lack of familiarity with the literature on scientism. Be that as it may, Wills continues to assert without argument that my “defense of weak-scientism is ideologically loaded,” that it implies “the exclusion of various others such as women or indigenous peoples from the socially sanctioned circle of knowers,” and that I make “hegemonic claims for science from which [I] stand to benefit” (Wills 2018b, 36).

In response, I must admit that I have no idea what sort of “ideologies” Weak Scientism is supposed to be loaded with, since Wills does not say what those are. Wills (2018b, 36) asserts without argument that “the position [I] take on scientism has social, political and monetary implications,” but he does not specify those implications. Nor does he show how social and political implications (whatever those are) are supposed to follow from the epistemic thesis of Weak Scientism (Mizrahi 2017a, 353). I am also not sure why Wills thinks that Weak Scientism implies “the exclusion of various others such as women or indigenous peoples from the socially sanctioned circle of knowers” (Wills 2018b, 36), since he provides no arguments for these assertions.

Of course, Weak Scientism entails that there is non-scientific knowledge (Mizrahi 2018b, 41). If there is non-scientific knowledge, then there are non-scientific knowers. In that case, on Weak Scientism, non-scientists are not excluded from “the circle of knowers.” In other words, on Weak Scientism, the circle of knowers includes non-scientists, which can be women and people of color, of course (recall Dr. Svetlana Barkanova). Contrary to what Wills seems to think, then, Weak Scientism cannot possibly entail “the exclusion of various others such as women or indigenous peoples from the socially sanctioned circle of knowers” (Wills 2018b, 36).

In fact, if it is “the exclusion of various others” that Wills (2018b, 36) is genuinely concerned about, then he is undoubtedly aware of the fact that it is precisely white men like him who are guilty of systematically excluding “various others,” such as women (Paxton et al. 2012) and people of color (Botts et al. 2014), from the academic discipline of philosophy (American Philosophical Association 2014). As anyone who is familiar with the academic discipline of philosophy knows, “philosophy faces a serious diversity problem” (Van Norden 2017b, 5). As Amy Ferrer (2012), Executive Director of the American Philosophical Association (APA), put it on Brian Leiter’s blog, Leiter Reports:

philosophy is one of the least diverse humanities fields, and indeed one of the least diverse fields in all of academia, in terms of gender, race, and ethnicity. Philosophy has a reputation for not only a lack of diversity but also an often hostile climate for women and minorities (emphasis added).

In light of the lack of diversity in academic philosophy, some have gone as far as arguing that contemporary philosophy is racist and xenophobic; otherwise, argues Bryan Van Norden (2017a), it is difficult to explain “the fact that the rich philosophical traditions of China, India, Africa, and the Indigenous peoples of the Americas are completely ignored by almost all philosophy departments in both Europe and the English-speaking world.”

In fact, Wills’ attacks on Weak Scientism illustrate how white men like him attempt to keep philosophy white and “foreigner-free” (Cherry and Schwitzgebel 2016). They do so by citing and discussing the so-called “greats,” which are almost exclusively Western men. Citations are rather scarce in Wills’ replies, but when he cites, he only cites “the greats,” like Aristotle and Augustine (see Schwitzgebel et al. 2018 on the “Insularity of Anglophone Philosophy”).

As for his claim that I “stand to benefit” (Wills 2018b, 36) from my defense of Weak Scientism, I have no idea what Wills is talking about. I had no idea that History and Philosophy of Science (HPS) and Science and Technology Studies (STS) “can often assert hegemony over other discourses” (Wills 2018b, 36). I bet this will come as a surprise to other HPS and STS scholars and researchers. They will probably be shocked to learn that they have that kind of power over other academic disciplines.

More importantly, even if it were true that I “stand to benefit” (Wills 2018b, 36) from my defense of Weak Scientism, nothing about the merit of my defense of Weak Scientism would follow from that. That is, to argue that Weak Scientism must be false because I stand to benefit from it being true is to argue fallaciously. In particular, it is an informal fallacy of the circumstantial ad hominem type known as “poisoning the well,” which “alleges that the person has a hidden agenda or something to gain and is therefore not an honest or objective arguer” (Walton and Krabbe 1995, 111).

It is as fallacious as arguing that climate change is not real because climate scientists stand to benefit from climate research or that MMR vaccines are not safe (e.g., cause autism) because medical researchers stand to benefit from such vaccines (Offit 2008, 213-214). These are the sort of fallacious arguments that are typically made by those who are ignorant of the relevant science or are arguing in bad faith.

In fact, the same sort of fallacious reasoning can be used to attack any scholar or researcher in any field of inquiry whatsoever, including Wills. For instance, just as my standing to benefit from defending Weak Scientism is supposed to be a reason to believe that Weak Scientism is false, or Paul Offit’s standing to gain from MMR vaccines is supposed to be a reason to believe that such vaccines are not safe, Wills’ standing to benefit from his attacks on Weak Scientism (e.g., by protecting his position as a Humanities professor) would be a reason to believe that his attacks on Weak Scientism are flawed.

Indeed, the administrators at Wills’ university would have a reason to dismiss his argument for a pay raise on the grounds that he stands to benefit from it (Van Vleet 2011, 16). Of course, such reasoning is fallacious no matter who is the target. Either MMR vaccines are safe and effective or they are not regardless of whether Offit stands to benefit from them. Climate change is real whether climate scientists stand to benefit from doing climate research. Likewise, Weak Scientism is true or false whether or not I stand to benefit from defending it.

Image by Maia Valenzuela via Flickr / Creative Commons

 

Revisiting the Joyce Scholar

Wills (2018b, 36) returns to his example of the Joyce scholar as an example of non-scientific knowledge “that come[s] from an academic context.” As I have already pointed out in my previous reply (Mizrahi 2018b, 41-42), it appears that Wills fails to grasp the difference between Strong Scientism and Weak Scientism. Only Strong Scientism rules out knowledge that is not scientific. On Weak Scientism, there is both scientific and non-scientific knowledge. Consequently, examples of non-scientific knowledge from academic disciplines other than scientific ones do not constitute evidence against Weak Scientism.

Relatedly, Wills claims to have demonstrated that I vacillate between Strong Scientism and Weak Scientism and cites page 22 of his previous attack (Wills 2018a, 22). Here is how Wills (2018a, 22) argues that I vacillate between Strong Scientism and Weak Scientism:

Perhaps it is the awareness of such difficulties that leads Mizhari [sic] to his stance of ‘Weak Scientism’. It is not a stance he himself entirely sticks to. Some of his statements imply the strong version of scientism as when he tells us the [sic] knowledge is “the scholarly work or research produced in scientific fields of study, such as the natural sciences, as opposed to non-scientific fields, such as the humanities” [Mizrahi 2018a, 22].

However, the full passage Wills cites as evidence of my vacillation between Strong Scientism and Weak Scientism is from the conclusion of my second reply to Brown (Mizrahi 2018a) and it reads as follows:

At this point, I think it is quite clear that Brown and I are talking past each other on a couple of levels. First, I follow scientists (e.g., Weinberg 1994, 166-190) and philosophers (e.g., Haack 2007, 17-18 and Peels 2016, 2462) on both sides of the scientism debate in treating philosophy as an academic discipline or field of study, whereas Brown (2017b, 18) insists on thinking about philosophy as a personal activity of “individual intellectual progress.” Second, I follow scientists (e.g., Hawking and Mlodinow 2010, 5) and philosophers (e.g., Kidd 2016, 12-13 and Rosenberg 2011, 307) on both sides of the scientism debate in thinking about knowledge as the scholarly work or research produced in scientific fields of study, such as the natural sciences, as opposed to non-scientific fields of study, such as the humanities, whereas Brown insists on thinking about philosophical knowledge as personal knowledge.

Clearly, in this passage, I am talking about how ‘knowledge’ is understood in the scientism debate, specifically, that knowledge is the published research or scholarship produced by practitioners in academic disciplines (see also Mizrahi 2017a, 353). I am not saying that non-scientific disciplines do not produce knowledge. How anyone can interpret this passage as evidence of vacillation between Strong Scientism and Weak Scientism is truly beyond me. To me, this amounts to “contextomy” (McGlone 2005), and thus further evidence of arguing in bad faith on Wills’ part.

Wills also misunderstands, as in his previous attack on Weak Scientism, the epistemic properties of unity, coherence, simplicity, and testability, and their role in the context of hypothesis testing and theory choice. For he seems to think that “a masterful exposition of Portrait of the Artist as Young Man will show the unity, coherence and simplicity of the work’s design to the extent that these are artistically desired features” (Wills 2018b, 36). Here Wills is equivocating on the meaning of the terms ‘unity’, ‘coherence’, and ‘simplicity’.

There is a difference between the epistemic and the artistic senses of these terms. For example, when it comes to novels, such as A Portrait of the Artist as Young Man, ‘simplicity’ may refer to literary style and language. When it comes to explanations or theories, however, ‘simplicity’ refers to the number of entities posited or assumptions taken for granted (Mizrahi 2016). Clearly, those are two different senses of ‘simplicity’ and Wills is equivocating on the two. As far as Weak Scientism is concerned, it is the epistemic sense of these terms that is of interest to us. Perhaps Wills fails to realize that Weak Scientism is an epistemic thesis because he has not read my (2017a), where I sketch the arguments for this thesis, or at least has not read it carefully enough despite claiming to be a practitioner of “close reading” (Wills 2018b, 34).

When he says that the Joyce scholar “tests [what he says] against the text,” Wills (2018b, 37) reveals his misunderstanding of testability once again. On Wills’ description of the work done by the Joyce scholar, what the Joyce scholar is doing amounts to accommodation, not novel prediction. I have already discussed this point in my previous reply to Wills (Mizrahi 2018b, 47) and I referred him to a paper in which I explain the difference between accommodation and novel prediction (Mizrahi 2012). But it appears that Wills has no interest in reading the works I cite in my replies to his attacks. Perhaps a Stanford Encyclopedia of Philosophy entry on the difference between accommodation and prediction would be more accessible (Barnes 2018).

Wills finds it difficult to see how the work of the Joyce scholar can be improved by drawing on the methods of the sciences. As Wills (2018b, 37) writes, “What in this hermeneutic process would be improved by ‘scientific method’ as Mizrahi describes it? Where does the Joyce scholar need to draw testable consequences from a novel hypothesis and test it with an experiment?” (original emphasis)

Because he sees no way the work of the Joyce scholar can benefit from the application of scientific methodologies, Wills thinks it follows that I have no choice but to say that the work of the Joyce scholar does not count as knowledge. As Wills (2018b, 37) writes, “It seems to me that only option for Mizrahi here is to deny that the Joyce scholar knows anything (beyond the bare factual information) and this means, alas, that his position once again collapses into strong scientism.”

It should be clear, however, that this is a non sequitur. Even if it is true that scientific methodologies are of no use to the Joyce scholar, it does not follow that the work of the Joyce scholar does not count as knowledge. Again, Weak Scientism is the view that scientific knowledge is better than non-scientific knowledge. This means that scientists produce knowledge using scientific methods, whereas non-scientists produce knowledge using non-scientific methods, it’s just that scientists produce better knowledge using scientific methods that are superior to non-scientific methods in terms of the production of knowledge. Non-scientists can use scientific methods to produce knowledge in their fields of inquiry. But even if they do not use scientific methods in their work, on Weak Scientism, the research they produce still counts as knowledge.

Moreover, it is not the case that scientific methodologies are of no use to literary scholars. Apparently, Wills is unaware of the interdisciplinary field in which the methods of computer science and data science are applied to the study of history, literature, and philosophy known as the “Digital Humanities.” Becoming familiar with work in Digital Humanities will help Wills understand what it means to use scientific methods in a literary context. Since I have already discussed all of this in my original paper (Mizrahi 2017a) and in my replies to Brown (Mizrahi 2017b; 2018a), I take this as another reason to think that Wills has not read those papers (or at least has not read them carefully enough).

To me, this is a sign that he is not interested in engaging with Weak Scientism in good faith, especially since my (2017a) and my replies to Brown are themselves instances of the use of methods from data science in HPS, and since I have cited two additional examples of work I have done with Zoe Ashton that illustrates how philosophy can be improved by the introduction of scientific methods (Ashton and Mizrahi 2018a and 2018b). Again, it appears that Wills did not bother to read (let alone read closely) the works I cite in my replies to his attacks.

Toward the end of his discussion of the Joyce scholar, Wills (2018b, 37) says that using scientific methods “may mean better knowledge in many cases.” If he accepts that using scientific methods “may mean better knowledge in many cases” (Wills 2018b, 37), then Wills thereby accepts Weak Scientism as well. For to say that using scientific methods “may mean better knowledge in many cases” (Wills 2018b, 37) is to say that scientific knowledge is generally better than non-scientific knowledge.

Of course, there are instances of bad science, just as there are instances of bad scholarship in any academic discipline. Generally speaking, however, research done by scientists using the methods of science will likely be better (i.e., quantitatively better in terms of research output and research impact as well as qualitatively better in terms of explanatory, predictive, and instrumental success) than research done by non-scientists using non-scientific methods. That is Weak Scientism and, perhaps unwittingly, Wills seems to have accepted it by granting that using scientific methods “may mean better knowledge in many cases” (Wills 2018b, 37).

Inference to the Best Explanation

In my (2017a), as well as in my replies to Brown (Mizrahi 2017b; 2018a) and to Wills (Mizrahi 2018b), I have argued that Inference to the Best Explanation (IBE) is used in both scientific and non-scientific disciplines. As McCain and Poston (2017, 1) put it:

Explanatory reasoning is quite common. Not only are rigorous inferences to the best explanation (IBE) used pervasively in the sciences, explanatory reasoning is virtually ubiquitous in everyday life. It is not a stretch to say that we implement explanatory reasoning in a way that is “so routine and automatic that it easily goes unnoticed” [Douven 2017].

Once this point is acknowledged, it becomes clear that, when judged by the criteria of good explanations, such as unity, coherence, simplicity, and testability, scientific IBEs are generally better than non-scientific IBEs (Mizrahi 2017a, 360; Mizrahi 2017b, 19-20; Mizrahi 2018a, 17; Mizrahi 2018b, 46-47).

In response, Wills tells the story of his daughter who has attempted to reason abductively in class once. Wills (2018b, 38) begins by saying “Let me go back to my daughter,” even though it is the first time he mentions her in his (2018b), and then goes on to say that she once explained “how Scriabin created [the Prometheus] chord” to the satisfaction of her classmates.

But how is this supposed to be evidence against Weak Scientism? In my (2017a), I discuss how IBE is used in non-scientific disciplines and I even give an example from literature (Mizrahi 2017a, 361). Apparently, Wills is unaware of that, which I take to be another indication that he has not read the paper that defends the thesis he seeks to criticize. Again, to quote Wills (2018b, 38) himself, “All disciplines use abduction,” so to give an example of IBE from a non-scientific discipline does nothing at all to undermine Weak Scientism. According to Weak Scientism, all academic disciplines produce knowledge, and many of them do so by using IBE, it’s just that scientific IBEs are better than non-scientific IBEs.

Wills asserts without argument that, in non-scientific disciplines, there is no need to test explanations even when IBE is used to produce knowledge. As Wills (2018b, 38) writes, “All disciplines use abduction, true, but they do not all arrive at the ‘best explanation’ by the same procedures.” For Wills (2018b, 38), his daughter did not need to test her hypothesis about “how Scriabin created [the Prometheus] chord.” Wills does not tell us what the hypothesis in question actually is, so it is hard to tell whether it is testable or not. To claim that it doesn’t need to be tested, however, even when the argument for it is supposed to be an IBE, would be to misuse or abuse IBE rather than use it.

That is, if one were to reason to the best explanation without judging competing explanations by the criteria of unity, coherence, simplicity, testability, and the like, then one would not be warranted in concluding that one’s explanation is the best among those considered. That is just how IBE works (Psillos 2007). To say that an explanation is the best is to say that, among the competing explanations considered, it is the one that explains the most, leaves out the least, is consistent with background knowledge, is the least complicated, and yields independently testable predictions (Mizrahi 2017a, 360-362).

Wills (2018b, 39) seems to grant that “unity, simplicity and coherence” are good-making properties of explanations, but not testability. But why not testability? Why an explanation must be simple in order to be a good explanation, but not testable? Wills does not say. Again (Mizrahi 2018b, 47), I would urge Wills to consult logic and reasoning textbooks that discuss IBE. In those books, he will find that, in addition to unity, coherence, and simplicity, testability is one of the “characteristics that are necessary conditions for any explanation to qualify as being a reasonable empirical explanation” (Govier 2010, 300).

In other words, IBE is itself the procedure by which knowledge is produced. This procedure consists of “an inference from observations and a comparison between competing hypotheses to the conclusion that one of those hypotheses best explains the observations” (Mizrahi 2018c). For example (Sinnott-Armstrong and Fogelin 2015, 196):

  • Observation: Your lock is broken and your valuables are missing.
  • Explanation: The hypothesis that your house has been burglarized, combined with previously accepted facts and principles, provides a suitably strong explanation of observation 1.
  • Comparison: No other hypothesis provides an explanation nearly as good as that in 2.
  • Conclusion: Your house was burglarized.

As we can see, the procedure itself requires that we compare competing hypotheses. As I have mentioned already, “common standards for assessing explanations” (Sinnott-Armstrong and Fogelin 2015, 195) include unity, coherence, simplicity, and testability. This means that, if the hypothesis one favors as the best explanation for observation 1 cannot be tested, then one would not be justified in concluding that it is the best explanation, and hence probably true. That is simply how IBE works (Psillos 2007).

Contrary to what Wills (2018b, 39) seems to think, those who reason abductively without comparing competing explanations by the criteria of unity, coherence, simplicity, and testability are not using IBE, they are misusing or abusing it (Mizrahi 2017a, 360-361). To reason abductively without testing your competing explanations is as fallacious as reasoning inductively without making sure that your sample is representative of the target population (Govier 2010, 258-262).

Image by Specious Reasons via Flickr / Creative Commons

 

The Defense Rests

Fallacious reasoning, unfortunately, is what I have come to expect from Wills after reading and replying to his attacks on Weak Scientism. But this is forgivable, of course, given that we all fall prey to mistakes in reasoning on occasion. Even misspelling my last name several times (Wills 2018a, 18, 22, 24) is forgivable, so I accept Wills’ (2018b, 39) apology. What is unforgivable, however, is lazy scholarship and arguing in bad faith. As I have argued above, Wills is guilty of both because, despite claiming to be a practitioner of “close reading” (Wills 2018b, 34), Wills has not read the paper in which I defend the thesis he seeks to attack (Mizrahi 2017a), or any of the papers in my exchange with Brown (Mizrahi 2017b; 2018a), as evidenced by the fact that he does not cite them at all (not to mention citing and engaging with other works on scientism).

This explains why Wills completely misunderstands Weak Scientism and the arguments for the quantitative superiority (in terms of research output and research impact) as well as qualitative superiority (in terms of explanatory, predictive, and instrumental success) of scientific knowledge over non-scientific knowledge. For these reasons, this is my second and final response to Wills. I have neither the time nor the patience to engage with lazy scholarship that was produced in bad faith.

Contact details: mmizrahi@fit.edu

References

Ashton, Zoe and Moti Mizrahi. “Intuition Talk is Not Methodologically Cheap: Empirically Testing the ‘Received Wisdom’ About Armchair Philosophy.” Erkenntnis 83, no. 3 (2018a): 595-612.

Ashton, Zoe and Moti Mizrahi. “Show Me the Argument: Empirically Testing the Armchair Philosophy Picture.” Metaphilosophy 49, no. 1-2 (2018b): 58-70.

American Philosophical Association. “Minorities in Philosophy.” Data and Information on the Field of Philosophy. Accessed on August 13, 2018. http://c.ymcdn.com/sites/www.apaonline.org/resource/resmgr/data_on_profession/minorities_in_philosophy.pdf.

Barnes, Eric Christian. “Prediction versus Accommodation.” In The Stanford Encyclopedia of Philosophy (Fall 2018 Edition), edited by E. N. Zalta. Accessed on August 14, 2018. https://plato.stanford.edu/archives/fall2018/entries/prediction-accommodation/.

Botts, Tina Fernandes, Liam Kofi Bright, Myisha Cherry, Guntur Mallarangeng, and Quayshawn Spencer. “What Is the State of Blacks in Philosophy?” Critical Philosophy of Race 2, no. 2 (2014): 224-242.

Cherry, Myisha and Eric Schwitzgebel. “Like the Oscars, #PhilosophySoWhite.” Los Angeles Times, March 04, 2016. Accessed on August 13, 2018. http://www.latimes.com/opinion/op-ed/la-oe-0306-schwitzgebel-cherry-philosophy-so-white-20160306-story.html.

Douven, Igor. “Abduction.” In The Stanford Encyclopedia of Philosophy, edited by E. N. Zalta (Summer 2017 Edition). Accessed on August 14, 2018. https://plato.stanford.edu/archives/sum2017/entries/abduction/.

Dupré, John. “Against Scientific Imperialism.” PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994, no. 2 (1994): 374-381.

Ferrer, Amy. “What Can We Do about Diversity?” Leiter Reports: A Philosophy Blog, December 04, 2012. Accessed on August 13, 2018. http://leiterreports.typepad.com/blog/2012/12/what-can-we-do-about-diversity.html.

Govier, Trudy. A Practical Study of Argument. Seventh Edition. Belmont, CA: Wadsworth, 2010.

Graff, Gerald and Cathy Birkenstein. They Say/I Say: The Moves that Matter in Academic Writing. Fourth Edition. New York: W. W. Norton & Co., 2018.

Haack, Susan. Defending Science–within Reason: Between Scientism and Cynicism. New York: Prometheus Books, 2007.

Hawking, Stephen and Leonard Mlodinow. The Grand Design. New York: Bantam Books, 2010.

Kidd, I. J. “How Should Feyerabend Have Defended Astrology? A Reply to Pigliucci.” Social Epistemology Review and Reply Collective 5, no. 6 (2016): 11-17.

McCain, Kevin and Ted Poston. “Best Explanations: An Introduction.” In Best Explanations: New Essays on Inference to the Best Explanation, edited by K. McCain and T. Poston, 1-6. Oxford: Oxford University Press, 2017.

McGlone, Matthew S. “Contextomy: The Art of Quoting out of Context.” Media, Culture & Society 27, no. 4 (2005): 511-522.

Mizrahi, Moti. “Why the Ultimate Argument for Scientific Realism Ultimately Fails.” Studies in the History and Philosophy of Science 43, no. 1 (2012): 132-138.

Mizrahi, Moti. “Why Simpler Arguments are Better.” Argumentation 30, no. 3 (2016): 247-261.

Mizrahi, Moti. “What’s So Bad about Scientism?” Social Epistemology 31, no. 4 (2017a): 351-367.

Mizrahi, Moti. “In Defense of Weak Scientism: A Reply to Brown.” Social Epistemology Review and Reply Collective 6, no. 11 (2017b): 9-22.

Mizrahi, Moti. “More in Defense of Weak Scientism: Another Reply to Brown.” Social

Epistemology Review and Reply Collective 7, no. 4 (2018a): 7-25.

Mizrahi, Moti. “Weak Scientism Defended Once More.” Social Epistemology Review and Reply Collective 7, no. 6 (2018b): 41-50.

Mizrahi, Moti. “The ‘Positive Argument’ for Constructive Empiricism and Inference to the Best Explanation. Journal for General Philosophy of Science (2018c): https://doi.org/10.1007/s10838-018-9414-3.

Offit, Paul A. Autism’s False Prophets: Bad Science, Risky Medicine, and the Search for a Cure. New York: Columbia University Press, 2008.

Paxton, Molly, Carrie Figdor, and Valerie Tiberius. “Quantifying the Gender Gap: An Empirical Study of the Underrepresentation of Women in Philosophy.” Hypatia 27, no. 4 (2012): 949-957.

Peels, Rik. “The Empirical Case Against Introspection.” Philosophical Studies 17, no. 9 (2016): 2461-2485.

Peels, Rik. “A Conceptual Map of Scientism.” In Scientism: Prospects and Problems, edited by J. De Ridder, R. Peels, and R. Van Woudenberg, 28-56. New York: Oxford University Press, 2018.

Psillos, Stathis. “The Fine Structure of Inference to the Best Explanation. Philosophy and Phenomenological Research 74, no. 2 (2007): 441-448.

Rosenberg, Alexander. The Atheist’s Guide to Reality: Enjoying Life Without Illusions. New York: W. W. Norton, 2011.

Scimago Journal & Country Rank. “Subject Bubble Chart.” SJR: Scimago Journal & Country Rank. Accessed on August 13, 2018. http://www.scimagojr.com/mapgen.php?maptype=bc&country=US&y=citd.

Schwitzgebel, Eric, Linus Ta-Lun Huang, Andrew Higgins, Ivan Gonzalez-Cabrera. “The Insularity of Anglophone Philosophy: Quantitative Analyses.” Philosophical Papers 47, no. 1 (2018): 21-48.

Sinnott-Armstrong, Walter and Robert Fogelin. Understanding Arguments. Ninth Edition. Stamford, CT: Cengage Learning, 2015.

Stenmark, Mikael. “What is Scientism?” Religious Studies 33, no. 1 (1997): 15-32.

Van Norden, Bryan. “Western Philosophy is Racist.” Aeon, October 31, 2017a. Accessed on August 12, 2018. https://aeon.co/essays/why-the-western-philosophical-canon-is-xenophobic-and-racist.

Van Norden, Bryan. Taking Back Philosophy: A Multicultural Manifesto. New York: Columbia University Press, 2017b.

Van Vleet, Jacob E. Informal Logical Fallacies: A Brief Guide. Lahman, MD: University Press of America, 2011.

Walton, Douglas N. and Erik C. W. Krabbe. Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning. Albany: State University of New York Press, 1995.

Weinberg, Steven. Dreams of a Final Theory: The Scientist’s Search for the Ultimate Laws of Nature. New York: Random House, 1994.

Wills, Bernard. “Why Mizrahi Needs to Replace Weak Scientism With an Even Weaker Scientism.” Social Epistemology Review and Reply Collective 7, no. 5 (2018a): 18-24.

Wills, Bernard. “On the Limits of any Scientism.” Social Epistemology Review and Reply Collective 7, no. 7 (2018b): 34-39.

[1] I would like to thank Adam Riggio for inviting me to respond to Bernard Wills’ second attack on Weak Scientism.

Author Information: Paolo Palladino, Lancaster University, p.palladino@lancaster.ac.uk

Palladino, Paolo. “Heidegger Today: On Jeff Kochan’s Science and Social Existence.” Social Epistemology Review and Reply Collective 7, no. 8 (2018): 41-46.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-40b

Art by Philip Beasley
Image by Sean Salmon via Flickr / Creative Commons

 

I have been invited to participate in the present symposium on Jeff Kochan’s Science as Social Existence: Heidegger and the Sociology of Scientific Knowledge. I would like to preface my response by expressing my gratitude to the editors of Social Epistemology for the opportunity to comment on this provocative intervention and by noting the following about my response’s intellectual provenance.

I have long worked at the intersection of historical, philosophical and sociological modes of inquiry into the making of scientific accounts and technological interventions in the material world, but at an increasing distance from the field of science and technology studies, widely defined. As a result, I am neither invested in disciplinary purity, nor party in the longstanding arguments over the sociology of scientific knowledge and its presuppositions about the relationship between the social and natural orders.

I must also admit, however, to being increasingly attracted to the ontological questions which the wider field of science and technology studies has posed in recent years. All this is important to how I come to think about both Science as Social Existence and the argument between Kochan and Raphael Sassower over the merits of Science as Social Existence.

Kochan’s Problems of the Strong Programme

As the full title of Science as Social Existence evinces, Kochan’s principal matter of concern is the sociology of scientific knowledge. He regards this as the field of study that is dedicated to explaining the production of knowledge about the material world in sociological terms, as these terms are understood among proponents of the so-called “strong programme”. As Kochan’s response to Sassower conveys pointedly, he is concerned with two problems in particular.

The first of these is that the sociology of scientific knowledge is hostage to a distinction between the inquiring subject and the objective world such that it is difficult to understand exactly how this subject is ever able to say anything meaningful about the objective world. The second, closely related problem is that the sociology of scientific knowledge cannot then respond to the recurrent charge that it holds to an unsustainable relationship between the social and natural orders.

Kochan proposes that Martin Heidegger’s existential phenomenology provides the wherewithal to answer these two problems. This, he suggests, is to the benefit of science and technology studies, the wider, interdisciplinary field of study, which the sociology of scientific knowledge could justifiably be said to have inaugurated but has also grown increasingly detached from the latter. Incidentally, while Kochan himself refers to this wider field as “science studies”, “science and technology studies” seems preferable because it not only enjoys greater currency, but also conveys more accurately the focus on practices and materiality from which stems the divergence between the enterprises Kochan seeks to distinguish.

Anyway, as becomes evident in the course of reading Science as Social Existence, Kochan’s proposal calls first for the correction of Joseph Rouse’s and Bruno Latour’s arguably mistaken reading of Heidegger, particularly in regard to Heidegger’s pivotal distinction between essence and existence, and to Heidegger’s further insistence upon the historicity of Being. This is followed by the obligatory illustration of what is to be gained from such a philosophical excursus.

Kochan thus goes on to revisit what has become a classic of science and technology studies, namely the arguments between Robert Boyle and Thomas Hobbes over the former’s signal invention, the air-pump. Kochan shows here how Heidegger’s thought enables a more symmetric account of the relationship between the social and natural order at issue in the arguments between Boyle and Hobbes, so disarming Latour’s otherwise incisive objection that the sociology of scientific knowledge is a neo-Kantian enterprise that affords matter no agency in the making of the world we inhabit. From this point of view, Science as Social Existence would not only seem to answer important conceptual problems, but also offer a helpful explication and clarification of the notoriously difficult Heideggerian corpus.

It should also be noted, however, that this corpus has actually played a marginal role in the development of science and technology studies and that leading figures in the field have nonetheless occasionally felt compelled to interrogate texts such as Heidegger’s Question Concerning Technology. Such incongruity about the place of Heidegger within the evolution of science and technology studies is perhaps important to understanding Sassower’s caustic line of questioning about what exactly is to be gained from the turn to Heidegger, which Science as Social Existence seeks to advance.

Real Love or a Shotgun Marriage?

Bluntly, Sassower asks why anyone should be interested in marrying Heideggerian existential phenomenology and the sociology of scientific knowledge, ultimately characterising this misbegotten conjunction as a “shotgun marriage’. My immediate answer is that Science as Social Existence offers more than just a detailed and very interesting, if unconventional, examination of the conceptual problems besetting the sociology of scientific knowledge.

As someone schooled in the traditions of history and philosophy of science who has grown increasingly concerned about the importance of history, I particularly welcome the clarification of the role that history plays in our understanding of scientific knowledge and technological practice. Kochan, following Heidegger to the letter, explains how the inquiring subject and the objective world are to be understood as coming into being simultaneously and how the relationship between the two varies in a manner such that what is and what can be said about the nature of that which is are a matter of historical circumstance.

As a result, history weighs upon us not just discursively, but also materially, and so much so that the world we inhabit must be understood as irreducibly historical. As Kochan puts it while contrasting Kant’s and Heidegger’s understanding of finitude:

For Heidegger … the essence of a thing is not something we receive from it, but something it possesses as a result of the socio-historically conditioned metaphysical projection within which it is let be what it is. On Heidegger’s account, not even an infinitely powerful intellect could grasp the intrinsic, independently existing essence of a thing, because no such essence exists. Hence, the finitude of our receptivity is not the issue; the issue is, instead, the finitude of our projectivity. The range of possible conceptualisations of a thing is conditioned by the historical tradition of the subject attempting to make sense of that thing. Only within the finite scope of possibilities enabled by the subject’s tradition can it experience a thing as intelligible, not to mention develop a clearly defined understanding of what it is (258-9).

Literally, tradition matters. Relatedly, I also welcome how Science as Social Existence helps me to clarify the ambiguities of Heidegger’s comportment toward scientific inquiry, which would have been very useful some time ago, as I tried to forge a bridge between the history of biology and a different set of philosophers to those usually considered within the history and philosophy of science, not just Heidegger, but also Michel Foucault and Gilles Deleuze.

As I sought to reflect upon the wider implications of Heidegger’s engagement with the biological sciences of his day, Science as Social Existence would have enabled me to fend off the charge that I misunderstood Heidegger’s distinction between ontic and ontological orders, between the existence of something and the meaning attributed to it. Thus, Kochan points out that:

Metaphysical knowledge is, according to Heidegger, a direct consequence of our finitude, our inescapable mortality, rather than of our presumed ability to transcend that finitude, to reach, infinitely, for heaven. Because the finitude of our constructive power makes impossible a transcendent grasp of the thing in-itself — leaving us to be only affected by it in its brute, independent existence — our attention is instead pushed away from the thing-in-itself and towards the constructive categories we must employ in order to make sense of it as a thing present-at-hand within-the-world.

For Heidegger, metaphysics is nothing other than the study of these categories and their relations to one another. Orthodox metaphysics, in contrast, treats these existential categories as ontic, that is, as extant mental things referring to the intrinsic properties of the things we seek to know, rather than as ontological, that is, as the existential structures of being-in-the-world which enable us to know those things (133-4).

The clarification would have helped me to articulate how the ontic and ontological orders are so inextricably related to one another and, today, so entangled with scientific knowledge and technological practice that Heidegger’s reading of Eugen Korschelt’s lectures on ageing and death matters to our understanding of the fissures within Heidegger’s argument. All this seems to me a wholly satisfactory answer to Sassower’s question about the legitimacy of the conjunction Kochan proposes. This said, Heidegger and sociology are not obvious companions and I remain unpersuaded by what Science as Social Existence might have to offer the more sociologically inclined field of science and technology studies. This, I think, is where the cracks within the edifice that is Science as Social Existence begin to show.

An Incompleteness

There is something unsettling about Science as Social Existence and the distinctions it draws between the sociology of scientific knowledge and the wider field of science and technology studies. For one thing, Science as Social Existence offers an impoverished reading of science and technology studies whereby the field’s contribution to the understanding the production of scientific knowledge and related technological practices is equated with Latour’s criticism of the sociology of scientific knowledge, as the latter was articulated in arguments with David Bloor nearly two decades ago.

Science as Social Existence is not nearly as interested in the complexity of the arguments shaping this wider field as it is in the heterogeneity of philosophical positions taken within the sociology of scientific knowledge with respect to the relationship between knowledge and the material world. It bears repeating at this point that Kochan defines the latter enterprise in the narrowest terms, which also seem far more attuned to philosophical, than sociological considerations. Such narrowness should perhaps come as no surprise given the importance that the sociology of scientific knowledge has attached to the correspondence theory of truth, but there also is much more to the history of philosophy than just the Cartesian and Kantian confrontations with Plato and Aristotle, which Heidegger privileges and Kochan revisits to answer the questions Rouse and Latour have asked of the sociology of scientific knowledge.

Sassower’s possibly accidental reference to a “Spinozist approach” is a useful reminder of both alternative philosophical traditions with respect to materiality, relationality and cognitive construction, and how a properly sociological inquiry into the production of scientific knowledge and technological practices might call for greater openness to the heterogeneity of contemporary social theory. This might even include actor-network theory and its own distinctive reformulation of Spinozist monadology. However, Science as Social Existence is not about any of this, and, as Kochan’s response to Sassower reminds us, we need to respond to its argument on its own terms. Let me then say something about Kochan’s configuration of phenomenology and sociological thought, which is just as unsettling as the relationship Kochan posits between the sociology of scientific knowledge and the wider field of science and technology studies.

Ethnomethodology is the most obvious inheritor to the phenomenological tradition which Kochan invokes to address the problems confronting the sociology of scientific knowledge, and it has also played a very important role in the evolution of science and technology studies. Key ethnomethodological interventions are ambivalent about Heideggerian constructions of phenomenology, but Kochan does not appear to have any great interest in either this sociological tradition or, relatedly, what might be the implications of Heidegger’s divergence from Edmund Husserl’s understanding of the phenomenological project for the relationship between subjects and knowledge.

Instead, Kochan prefers to weld together existential phenomenology and interactionist social theory, because, as he puts it, “interactionist social theory puts the individual subject at the methodological centre of explanations of social, and thus also of cognitive, order” (372). This, however, raises troubling questions about Kochan’s reading and mobilisation of Heidegger. Kochan equates the subject and Being, but Heidegger himself felt the need to develop the term beyond its more conventional connotations of “existence” as he came to understand the subject and Being as closely related, but not one and the same. As Kochan himself notes Being “is not a thing, substance, or object” (39). This form of existence is to be understood instead as a performative operation, if not a becoming.

Furthermore, Kochan would seem to underestimate the importance of Heidegger’s understanding of the relationship between social existence and the fullest realisation of this form of existence. While Heidegger undoubtedly regards Being as emerging from within the fabric of intersubjective relations, Heidegger also maintains that authentic Being realises itself by extricating itself from other beings and so confronting the full meaning of its finitude. As a result, one is compelled to ask what exactly is Kochan’s understanding of the subject and its subjectivity, particularly in relation to the location of “knowledge”.

Possible Predecessors Gone Unacknowledged

Strikingly, these are the kinds of questions that Foucault asks about phenomenology, an enterprise which he regards as contributing to the consolidation of the modern subject. Yet, Kochan would appear to dismiss Foucault’s work, even though Foucault has much to say about not just the historicity of the subject, but also about its entanglement with mathēsis, a concept central to Kochan’s analysis of the encounter between Boyle and Hobbes. Despite the richness and symmetry of the account Kochan offers, it seems quite unsatisfactory to simply observe in a footnote that “Heidegger’s usage of mathēsis differs from that of Michel Foucault, who defines it as ‘the science of calculable order’” (234 n20).

Put simply, there is something amiss about all the slippage around questions of subjectivity, as well as the relationship between the historical and ontological ordering of the world, which calls into question the sociological foundations of the account of the sociology of scientific knowledge which Science as Social Existence seeks to articulate.

Clearly, Kochan mistrusts sociological critiques of the subject, and one of the reasons Kochan provides for the aversion is articulated most pithily in the following passage from his response to Sassower, in relation to the sociological perspectives that have increasingly come to dominate science and technology studies. Kochan writes:

What interests these critics … are fields of practice. Within these fields, the subject is constituted. But the fundamental unit of analysis is the field – or system – not the subject. Subjectivity is, on this theory, a derivative phenomenon, at best, a secondary resource for sociological analysis. From my perspective, because subjectivity is fundamental to human existence, it cannot be eliminated in this way.

In other words, if the subject is constructed, then its subjectivity and structures of feeling can provide no insight into our present condition. This, however, is a very familiar conundrum, one that, in another guise, has long confronted science and technology studies: That something is constructed does not necessarily amount to its “elimination”. The dividing issue at the heart of Science as Social Existence would then seem to be less the relationship between scientific knowledge and the material constitution of the world about us, and more whether one is interested in the clarity of transcendental analytics or charting the topological complexities of immanent transformation.

My preference, however, is to place such weighty and probably irresolvable issues in suspension. It seems to me that it might be more productive to reconsider instead how the subject is constituted and wherein lie its distinctive capacities to determine what is and what can be done, here and now. Anthropological perspectives on the questions science and technology studies seek to pose today suggest that this might be how to build most productively upon the Heideggerian understanding of the subject and the objective world as coming into being simultaneously.

Perhaps, however, I am just another of those readers destined to be “unhappy” about Science as Social Existence, but I am not sure that this is quite right because I hope to have conveyed how much I enjoyed thinking about the questions Science as Social Existence poses, and I would just like to hear more about what Kochan thinks of such alternative approaches to reading Heidegger today.

Contact details: p.palladino@lancaster.ac.uk

References

Kochan, Jeff. Science as Social Existence: Heidegger and the Sociology of Scientific Knowledge. Cambridge: Open Book Publishers, 2017.

Author Information: Moti Mizrahi, Florida Institute of Technology, mmizrahi@fit.edu

Mizrahi, Moti. “Weak Scientism Defended Once More.” Social Epistemology Review and Reply Collective 7, no. 6 (2018): 41-50.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3Yx

See also:

One of Galileo’s original compasses, on display at the Museo Galileo, a feature of the Instituto e Museo di Storia della Scienza in Florence, Italy.
Image by Anders Sandberg via Flickr / Creative Commons

 

Bernard Wills (2018) joins Christopher Brown (2017, 2018) in criticizing my defense of Weak Scientism (Mizrahi 2017a, 2017b, 2018a). Unfortunately, it seems that Wills did not read my latest defense of Weak Scientism carefully, nor does he cite any of the other papers in my exchange with Brown. For he attributes to me the view that “other disciplines in the humanities [in addition to philosophy] do not produce knowledge” (Wills 2018, 18).

Of course, this is not my view and I affirm no such thing, contrary to what Wills seems to think. I find it hard to explain how Wills could have made this mistake, given that he goes on to quote me as follows: “Scientific knowledge can be said to be qualitatively better than non-scientific knowledge insofar as such knowledge is explanatorily, instrumentally, and predictively more successful than non-scientific knowledge” (Mizrahi 2018a, 7; quoted in Wills 2018, 18).

Clearly, the claim ‘Scientific knowledge is better than non-scientific knowledge’ entails that there is non-scientific knowledge. If the view I defend entails that there is non-scientific knowledge, then it cannot also be my view that “science produces knowledge and all the other things we tend to call knowledge are in fact not knowledge at all but something else” (Wills 2018, 18).

Even if he somehow missed this simple logical point, reading the other papers in my exchange with Brown should have made it clear to Wills that I do not deny the production of knowledge by non-scientific disciplines. In fact, I explicitly state that “science produces scientific knowledge, mathematics produces mathematical knowledge, philosophy produces philosophical knowledge, and so on” (Mizrahi 2017a, 353). Even in my latest reply to Brown, which is the only paper from my entire exchange with Brown that Wills cites, I explicitly state that, if Weak Scientism is true, then “philosophical knowledge would be inferior to scientific knowledge both quantitatively (in terms of research output and research impact) and qualitatively (in terms of explanatory, instrumental, and predictive success)” (Mizrahi 2018a, 8).

If philosophical knowledge is quantitatively and qualitatively inferior to scientific knowledge, then it follows that there is philosophical knowledge. For this reason, only a rather careless reader could attribute to me the view that “other disciplines in the humanities [in addition to philosophy] do not produce knowledge” (Wills 2018, 18).

There Must Be Some Misunderstanding

Right from the start, then, Wills gets Weak Scientism wrong, even though he later writes that, according to Weak Scientism, “there may be knowledge of some sort outside of the sciences” (Wills 2018, 18). He says that he will ignore the quantitative claim of Weak Scientism and focus “on the qualitative question and particularly on the claim that science produces knowledge and all the other things we tend to call knowledge are in fact not knowledge at all but something else” (Wills 2018, 18). Wills can focus on whatever he wants, of course, but that is not Weak Scientism.

Weak Scientism is not the view that only science produces real knowledge; that is Strong Scientism (Mizrahi 2017a, 353). Rather, Weak Scientism is the view that, “Of all the knowledge we have [i.e., there is knowledge other than scientific knowledge], scientific knowledge is the best knowledge” (Mizrahi 2017a, 354). In other words, scientific knowledge “is simply the best; better than all the rest” (Mizrahi 2017b, 20). Wills’ criticism, then, misses the mark completely. That is, it cannot be a criticism against Weak Scientism, since Weak Scientism is not the view that “science produces knowledge and all the other things we tend to call knowledge are in fact not knowledge at all but something else” (Wills 2018, 18).

Although he deems the quantitative superiority of scientific knowledge over non-scientific knowledge “a tangential point,” and says that he will not spend time on it, Wills (2018, 18) remarks that “A German professor once told [him] that in the first half of the 20th Century there were 40,000 monographs on Franz Kafka alone!” Presumably, Wills’ point is that research output in literature exceeds that of scientific disciplines. Instead of relying on gut feelings and hearsay, Wills should have done the required research in order to determine whether scholarly output in literature really does exceed the research output of scientific disciplines.

If we look at the Scopus database, using the data and visualization tools provided by Scimago Journal & Country Rank, we can see that research output in a natural science like physics and a social science like psychology far exceeds research output in humanistic disciplines like literature and philosophy. On average, psychology has produced 15,000 more publications per year than either literature or philosophy between the years 1999 and 2017. Likewise, on average, physics has produced 54,000 more publications per year than either literature or philosophy between the years 1999 and 2017 (Figure 1). 

Figure 1. Research output in Literature, Philosophy, Physics, and Psychology from 1999 to 2017 (Source: Scimago Journal & Country Rank)

Contrary to what Wills seems to think or what his unnamed German professor may have told him, then, it is not the case that literary scholars produce more work on Shakespeare or Kafka alone than physicists or psychologists produce. The data from the Scopus database show that, on average, it takes literature and philosophy almost two decades to produce what psychology produces in two years or what physics produces in a single year (Mizrahi 2017a, 357-359).

In fact, using JSTOR Data for Research, we can check Wills’ number, as reported to him by an unnamed German professor, to find out that there are 13,666 publications (i.e., journal articles, books, reports, and pamphlets) on Franz Kafka from 1859 to 2018 in the JSTOR database. Clearly, that is not even close to “40,000 monographs on Franz Kafka alone” in the first half of the 20th Century (Wills 2018, 18). By comparison, as of May 22, 2018, the JSTOR database contains more publications on the Standard Model in physics and the theory of conditioning in behavioral psychology than on Franz Kafka or William Shakespeare (Table 1).

Table 1. Search results for ‘Standard Model’, ‘Conditioning’, ‘William Shakespeare’, and ‘Franz Kafka’ in the JSTOR database as a percentage of the total number of publications, n = 12,633,298 (Source: JSTOR Data for Research)

  Number of Publications Percentage of JSTOR corpus
Standard Model 971,968 7.69%
Conditioning 121,219 0.95%
William Shakespeare 93,700 0.74%
Franz Kafka 13,667 0.1%

Similar results can be obtained from Google Books Ngram Viewer when we compare published work on Shakespeare, which Wills thinks exceeds all published work in other disciplines, for he says that “Shakespeare scholars have all of us beat” (Wills 2018, 18), with published work on a contemporary of Shakespeare (1564-1616) from another field of study, namely, Galileo (1564-1642). As we can see from Figure 2, from 1700 to 2000, ‘Galileo’ consistently appears in more books than ‘William Shakespeare’ does.

Figure 2. Google Books results for ‘William Shakespeare’ and ‘Galileo’ from 1700 to 2000 (Source: Google Books Ngram Viewer)

Racking Up the Fallacies

Wills continues to argue fallaciously when he resorts to what appears to be a fallacious ad hominem attack against me. He asks (rhetorically?), “Is Mr. Mizrahi producing an argument or a mere rationalization of his privilege?” (Wills 2018, 19) It is not clear to me what sort of “privilege” Wills wants to claim that I have, or why he accuses me of colonialism and sexism, since he provides no arguments for these outrageous charges. Moreover, I do not see how this is at all relevant to Weak Scientism. Even if I am somehow “privileged” (whatever Wills means by that), Weak Scientism is either true or false regardless.

After all, I take it that Wills would not doubt his physician’s diagnoses just because he or she is “privileged” for working at a hospital. Whether his physician is “privileged” for working at a hospital has nothing to do with the accuracy of his or her diagnoses. For these reasons, Wills’ ad hominem is fallacious (as opposed to a legitimate ad hominem as a rebuttal to an argument from authority, see Mizrahi 2010). I think that SERRC readers will be better served if we focus on the ideas under discussion, specifically, Weak Scientism, not the people who discuss them.

Speaking of privilege and sexism, however, it might be worth noting that, throughout his paper, Wills refers to me as ‘Mr. Mizrahi’ (rather than ‘Dr. Mizrahi’ or simply ‘Mizrahi’, as is the norm in academic publications), and that he has misspelled my name on more than one occasion (Wills 2018, 18, 22, 24). Studies suggest that addressing female doctors with ‘Ms.’ or ‘Mrs.’ rather than ‘Dr.’ might reveal gender bias (see, e.g., Files et al. 2017). Perhaps forms of address reveal not only gender bias but also ethnic or racial bias when people with non-white or “foreign” names are addressed as Mr. (or Ms.) rather than Dr. (Erlenbusch 2018).

Aside from unsubstantiated claims about the amount of research produced by literary scholars, fallacious appeals to the alleged authority of unnamed German professors, and fallacious ad hominem attacks, does Wills offer any good arguments against Weak Scientism? He spends most of his paper (pages 19-22) trying to show that there is knowledge other than scientific knowledge, such as knowledge produced in the fields of “Law and Music Theory” (Wills 2018, 20). This, however, does nothing at all to undermine Weak Scientism. For, as mentioned above, Weak Scientism is the view that scientific knowledge is superior to non-scientific knowledge, which means that there is non-scientific knowledge; it’s just not as good as scientific knowledge (Mizrahi 2017a, 356).

The Core of His Concept

Wills finally gets to Weak Scientism on the penultimate page of his paper. His main objection against Weak Scientism seems to be that it is not clear to him how scientific knowledge is supposed to be better than non-scientific knowledge. For instance, he asks, “Better in what context? By what standard of value?” (Wills 2018, 23) Earlier he also says that he is not sure what are the “certain relevant respect” in which scientific knowledge is superior to non-scientific knowledge (Wills 2018, 18).

Unfortunately, this shows that Wills either has not read the other papers in my exchange with Brown or at least has not read them carefully. For, starting with my first defense of Weak Scientism (2017a), I explain in great detail the ways in which scientific knowledge is better than non-scientific knowledge. Briefly, scientific knowledge is quantitatively better than non-scientific knowledge in terms of research output (i.e., more publications) and research impact (i.e., more citations). Scientific knowledge is qualitatively better than non-scientific knowledge in terms of explanatory, instrumental, and predictive success (Mizrahi 2017a, 364; Mizrahi 2017b, 11).

Wills tries to challenge the claim that scientific knowledge is quantitatively better than non-scientific knowledge by exclaiming, “Does science produce more knowledge that [sic] anything else? Hardly” (Wills 2018, 23). He appeals to Augustine’s idea that one “can produce a potential infinity of knowledge simply by reflecting recursively on the fact of [one’s] own existence” (Wills 2018, 23). In response, I would like to borrow a phrase from Brown (2018, 30): “good luck getting that published!”

Seriously, though, the point is that Weak Scientism is a thesis about academic knowledge or research. In terms of research output, scientific disciplines outperform non-scientific disciplines (see Figure 1 and Table 1 above; Mizrahi 2017a, 357-359; Mizrahi 2018a, 20-21). Besides, just as “recursive processes can extend our knowledge indefinitely in the field of mathematics,” they can also extend our knowledge in other fields as well, including scientific fields. That is, one “can produce a potential infinity of knowledge simply by reflecting recursively on the” (Wills 2018, 23) Standard Model in physics or any other scientific theory and/or finding. For this reason, Wills’ objection does nothing at all to undermine Weak Scientism.

Wills (2018, 23) tries to problematize the notions of explanatory, instrumental, and predictive success in an attempt to undermine the claim that scientific knowledge is qualitatively better than non-scientific knowledge in terms of explanatory, instrumental, and predictive success. But it seems that he misunderstands these notions as they apply to the scientism debate.

As far as instrumental success is concerned, Wills (2018, 23) asks, “Does science have (taken in bulk) more instrumental success than other knowledge forms? How would you even count given that craft knowledge has roughly 3 million-year head start?” Even if it is true that “craft knowledge has roughly 3 million-year head start,” it is irrelevant to whether Weak Scientism is true or false. This is because Weak Scientism is a thesis about academic knowledge or research produced by academic fields of study (Mizrahi 2017a, 356; Mizrahi 2017b, 11; Mizrahi 2018a, 12).

Solving the Problem and Explaining the Issue

As far as explanatory success is concerned, Wills (2018, 23) writes, “Is science more successful at explanation? Hardly, if science could solve problems in literature or history then these fields would not even exist.” There are a couple of problems with this objection. First, explaining and problem solving are not the same thing (Mizrahi and Buckwalter 2014). Second, what makes scientific explanations good explanations are the good-making properties that are supposed to make all explanations (both scientific and non-scientific) good explanations, namely, unification, coherence, simplicity, and testability (Mizrahi 2017a, 360-362; Mizrahi 2017b, 19-20; Mizrahi 2018a, 17).

I have already made this point several times in my replies to Brown, which Wills does not cite, namely, that Inference to the Best Explanation (IBE) is used in both scientific and non-scientific contexts (Mizrahi 2017a, 362). That is, “IBE is everywhere” (Mizrahi 2017b, 20). It’s just that scientific IBEs are better than non-scientific IBEs because they exhibit more of (and to a greater extent) the aforementioned properties that make any explanation a good explanation (Mizrahi 2018b).

As far as predictive success is concerned, Wills (2018, 23) asks, “Does science make more true predictions? Again how would you even count given that for millions of years, human beings survived by making hundreds of true predictions daily?” There are a few problems with this objection as well. First, even if it is true that “for millions of years, human beings survived by making hundreds of true predictions daily,” it is irrelevant to whether Weak Scientism is true or false, since Weak Scientism is a thesis about academic knowledge or research produced by academic fields of study (Mizrahi 2017a, 356; Mizrahi 2017b, 11; Mizrahi 2018a, 12).

Second, contrary to what Wills (2018, 24) seems to think, testing predictions in science is not simply a matter of making assertions and then checking to see if they are true. For one thing, a prediction is not simply an assertion, but rather a consequence that follows from a hypothesis plus auxiliary hypotheses (Mizrahi 2015). For another, a prediction needs to be novel such that we would not expect it to be the case except from the vantage point of the theory that we are testing (Mizrahi 2012).

As I have advised Brown (Mizrahi 2018, 17), I would also advise Wills to consult logic and reasoning textbooks, not because they provide support for the claim that “science is instrumentally successful, explanatory and makes true predictions,” as Wills (2018, 23) erroneously thinks, but because they discuss hypothesis testing in science. For Wills’ (2018, 24) remark about Joyce scholars suggests a failure to understand how hypotheses are tested in science.

Third, like Brown (2017, 49), Wills (2018, 23) admits that, just like science, philosophy is in the explanation business. For Wills (2018, 23) says that, “certainty, instrumental success, utilitarian value, predictive power and explanation all exist elsewhere in ways that are often not directly commensurable with the way they exist in science” (emphasis added). But if distinct fields of study have the same aim (i.e., to explain), then their products (i.e., explanations) can be evaluated with respect to similar criteria, such as unification, coherence, simplicity, and testability (Mizrahi 2017a, 360-362; Mizrahi 2017b, 19-20; Mizrahi 2018a, 17).

In other words, there is no incommensurability here, as Wills seems to think, insofar as both science and philosophy produce explanations and those explanations must exhibit the same good-making properties that make all explanations good explanations (Mizrahi 2018a, 17; 2018b).

“You Passed the Test!”

If Wills (2018, 24) wants to suggest that philosophers should be “testing their assertions in the ways peculiar to their disciplines,” then I would agree. However, “testing” does not simply mean making assertions and then checking to see if they are true, as Wills seems to think. After all, how would one check to see if assertions about theoretical entities are true? To test a hypothesis properly, one must derive a consequence from it (plus auxiliary assumptions) that would be observed only if the hypothesis (plus the auxiliary assumptions) is true.

Observations and/or experimentation would then indicate to one whether the consequence obtains or not (Mizrahi 2012). Of course, some philosophers have been doing just that for some time now (Knobe 2017). For instance, some experimental philosophers test hypotheses about the alleged intuitiveness of philosophical ideas and responses to thought experiments (see, e.g., Kissinger-Knox et al. 2018). I welcome such empirical work in philosophy.

Contrary to what Wills (2018, 19) seems to think, then, my aim is not to antagonize philosophers. Rather, my aim is to reform philosophy. In particular, as I have suggested in my recent reply to Brown (Mizrahi 2018a, 22), I think that philosophy would benefit from adopting not only the experimental methods of the cognitive and social sciences, as experimental philosophers have done, but also the methods of data science, such as data mining and corpus analysis (see, e.g., Ashton and Mizrahi 2018a and 2018b).

Indeed, the XPhi Replicability Project recently published a report on replication studies of 40 experimental studies according to which experimental studies “successfully replicated about 70% of the time” (Cova et al. 2018). With such a success rate, one could argue that the empirical revolution in philosophy is well under way (see also Knobe 2015). Resistance is futile!

Contact details: mmizrahi@fit.edu

References

Ashton, Z., and Mizrahi, M. “Intuition Talk is Not Methodologically Cheap: Empirically Testing the ‘Received Wisdom’ About Armchair Philosophy.” Erkenntnis 83, no. 3 (2018a): 595-612.

Ashton, Z., and Mizrahi, M. “Show Me the Argument: Empirically Testing the Armchair Philosophy Picture.” Metaphilosophy 49, no. 1-2 (2018b): 58-70.

Brown, C. M. “Some Objections to Moti Mizrahi’s ‘What’s So Bad About Scientism?’.” Social Epistemology Review and Reply Collective 6, no. 8 (2017): 42-54.

Brown, C. M. “Defending Some Objections to Moti Mizrahi’s Arguments for Weak Scientism.” Social Epistemology Review and Reply Collective 7, no. 2 (2018): 1-35.

Cova, Florian, Brent Strickland, Angela G Abatista, Aurélien Allard, James Andow, Mario Attie, James Beebe, et al. “Estimating the Reproducibility of Experimental Philosophy.” PsyArXiv, April 21, 2018. doi:10.17605/OSF.IO/SXDAH.

Erlenbusch, V. “Being a Foreigner in Philosophy: A Taxonomy.” Hypatia 33, no. 2 (2018): 307-324.

Files, J. A., Mayer, A. P., Ko, M. G., Friedrich, P., Jenkins, M., Bryan, M. J., Vegunta, S., Wittich, C. M., Lyle, M. A., Melikian, R., Duston, T., Chang, Y. H., Hayes, S. M. “Speaker Introductions at Internal Medicine Grand Rounds: Forms of Address Reveal Gender Bias.” Journal of Women’s Health 26, no. 5 (2017): 413-419.

Google. “Ngram Viewer.” Google Books Ngram Viewer. Accessed on May 21, 2018. https://books.google.com/ngrams.

JSTOR. “Create a Dataset.” JSTOR Data for Research. Accessed on May 22, 2018. https://www.jstor.org/dfr/.

Kissinger-Knox, A., Aragon, P., and Mizrahi, M. “Does Non-Moral Ignorance Exculpate? Situational Awareness and Attributions of Blame and Forgiveness.” Acta Analytica 33, no. 2 (2018): 161-179.

Knobe, J. “Experimental Philosophy.” Philosophy Compass 2, no. 1 (2007): 81-92.

Knobe, J. “Philosophers are Doing Something Different Now: Quantitative Data.” Cognition 135 (2015): 36-38.

Mizrahi, M. “Take My Advice–I Am Not Following It: Ad Hominem Arguments as Legitimate Rebuttals to Appeals to Authority.” Informal Logic 30, no. 4 (2010): 435-456.

Mizrahi, M. “Why the Ultimate Argument for Scientific Realism Ultimately Fails.” Studies in History and Philosophy of Science Part A 43, no. 1 (2012): 132-138.

Mizrahi, M. “Don’t Believe the Hype: Why Should Philosophical Theories Yield to Intuitions?” Teorema: International Journal of Philosophy 34, no. 3 (2015): 141-158.

Mizrahi, M. “What’s So Bad about Scientism?” Social Epistemology 31, no. 4 (2017a): 351-367.

Mizrahi, M. “In Defense of Weak Scientism: A Reply to Brown.” Social Epistemology Review and Reply Collective 6, no. 11 (2017b): 9-22.

Mizrahi, M. “More in Defense of Weak Scientism: Another Reply to Brown.” Social Epistemology Review and Reply Collective 7, no. 4 (2018a): 7-25.

Mizrahi, M. “The ‘Positive Argument’ for Constructive Empiricism and Inference to the Best Explanation.” Journal for General Philosophy of Science (2018b): https://doi.org/10.1007/s10838-018-9414-3.

Mizrahi, M. and Buckwalter, W. “The Role of Justification in the Ordinary Concept of Scientific Progress.” Journal for General Philosophy of Science 45, no. 1 (2014): 151-166.

Scimago Journal & Country Rank. “Subject Bubble Chart.” SJR: Scimago Journal & Country Rank. Accessed on May 20, 2018. http://www.scimagojr.com/mapgen.php?maptype=bc&country=US&y=citd.

Wills, B. “Why Mizrahi Needs to Replace Weak Scientism With an Even Weaker Scientism.” Social Epistemology Review and Reply Collective 7, no. 5 (2018): 18-24.

Author Information: Francisco Collazo-Reyes, Centro de Investigación y de Estudios Avanzados del IPN,  fcollazo@fis.cinvestav.mx
Hugo García Compeán, Centro de Investigación y de Estudios Avanzados del IPN
Miguel Ángel Pérez-Angón, Centro de Investigación y de Estudios Avanzados del IPN
Jane Margaret-Russell, Universidad Nacional Autónoma de México

Collazo Reyes, Francisco; Hugo García Compeán, Miguel Ángel Pérez-Angón, Jane Margaret-Russell,. “The Nature of the Eponym.” Social Epistemology Review and Reply Collective 7, no. 6 (2018): 12-15.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3XZ

See also:

Image by Mark Hogan via Flickr / Creative Commons

 

We agree in general with the comments made by G. Vélez-Cuartas (2018), on our paper published recently in Social Epistemology (Collazo-Reyes, et al, 2018). He accepts the use of our methodology in the analysis of the eponym of Jerzy Plebanski and at the same time, suggests applying this methodology to search for the formation of invisible colleges or scientific networks associated with the emergence of epistemic communities.

This was not a direct goal of our work but we included some related aspects in the revised version of our manuscript that may seem somewhat distant from the ambit of the eponym: namely, intertextuality, obliteration by incorporation, scientometrics networks, invisible colleges, epistemic communities, Jerzy Plebanski and “plebanski”. All these topics are keywords to access our paper in the indexes of scientific literature. These aspects distinguish our methodology from other approaches used in almost a thousand papers that addressed the issue of eponyms, according to a recent search for this topic in Web of Science database.

Within this framework, we appreciate the author’s suggestion to extend our analysis to other subject areas since “eponym as a scientometric tool sounds good as a promising methodology”. In particular, “to induce an analysis on other areas of sociology of science and social epistemology” in order “to reach a symbolic status in a semantic community that is organized in a network of meaning” and could show “a geographical penetration of scientific institutions and global dynamics of scientific systems” (Vélez-Cuartas, 2018).

Traditionally, published work on eponymy has studied the contribution or influence of certain authors in their respective scientific disciplines through biographies, tributes, eulogies or life histories and narratives. Some of these have been published as a series of studies like “Marathon of eponyms” (Scully et al., 2012) or “The man behind the eponym” (Steffen, 2004). The post-structuralism movement mentioned in our paper (Collazo-Reyes, et al, 2018) has criticized this approach.

In scientific texts, the use of the term “plebanski”, as an eponym of the proper name of Jerzy Plebanski, corroborates the recognition given by various authors to the work developed by the Polish scientist. Acknowledgement is apparent in cognitive texts on different aspects of plebanski’s contributions and in this context; the “plebanski” term is cited as a cognitive entity macro-referenced in the framework of scientific communication (Pang, 2010).

We would like to mention two points related to future applications of our findings on the use of eponym in the Latin American scientific literature:

1) The process involved in the construction of an eponym inherently generates a macro-referential scheme that is not considered in the cognitive structure of the databases of the bibliographical indices. The operational strength of the intertextuality associated with the referential process helps to generate socio-cognitive relations and space-time flows of scientific information.

This scheme requires characterization through a relatively exhaustive search in the different variants of the bibliographical indices: references, abstracts, citations, key words, views, twitters, blogs, Facebook, etc. (WoS, Scopus, arXiv, INSPIRE, ADS/NASA, Google citation, altmetric platforms). Most of these have arisen within the domain of the traditional bibliographical databases. Therefore, there is a clear possibility to generate an eponym index to characterize the intertextual structures not associated with the known bibliographical indices.

2) We coincide with the author on the need to take a new approach to carrying out an exhaustive search of eponyms as related to the Latin American scientific community. We are interested in characterizing the geography of collaboration at different levels: local, national, regional, and international (Livingstone, 2003; Naylor, 2005). This approach has been followed in the study of the geographical origin of eponyms in relation to the dominant system of scientific communication (Shapin, 1998; Livingstone, 1995, 2003; Geographies of Science, 2010).

We made a first attempt in this direction in our study of the “plebanski” eponym in the area of mathematical physics. In this paper, we made use of the methodology involved in “geographies of science” (Livingstone, 2010; Geographies of Science, 2010; Knowledge and Space, 2016) with theoretical tools that enhance the projections made in the framework of the sociology of science, bibliometrics and science communication.

In particular, the “spatial turn” movement (Finnegan, 2008; Gunn, 2001; Frenken, 2009; Fa-ti, 2012) offers a new dimension in the development of information systems, maps and networks using an innovative methodology such as “spatial scientometrics” (Frenken et al., 2009; Flores-Vargas, et al, 2018).

The new proposal considers, in each application of an eponym, the original source of authors, institutions, journals and subject matters. Each source includes the position in the geographical distribution of scientific knowledge associated with a given discipline. This information is then referred to as “geo-reference” and the eponyms as “macro-georeferenced” entities.

In this scheme, the generation of eponyms involves the combination of the different sources for authors, institutions, journals and subject areas. The resulting network may develop new aspects of the distribution mechanism of the asymmetrical power associated with the geographies of knowledge (Geographies of Knowledge and Power, 2010).

Contact details: fcollazo@fis.cinvestav.mx

References

Collazo-Reyes, F., H. García-Compeán, M. A. Pérez-Angón, and J. M. Russell. 2018.  “Scientific Eponyms in Latin America: The Case of Jerzy Plebanski in the Area of Mathematical Physics.” Social Epistemology 32 (1): 63-74.

Fa-ti, F. 2012. “The global turn in the history of science.” East Asian Science, Technology and Society: An International Journal 6 (2): 249-258.

Finnegan, D. A. 2008. “The spatial turn: Geographical approaches in the history of science.” Journal of the History of Biology, 41 (2): 369-388.

Flores-Vargas, X., S. H. Vitar-Sandoval, J. I. Gutiérrez-Maya, P. Collazo-Rodríguez, and F. Collazo-Reyes. 2018. “Determinants of the emergence of modern scientific knowledge in mineralogy (Mexico, 1975-1849): a geohistoriometric approach.” Scientometrics, https://doi.org/10.1007/s11192-018-2646-5.

Frenken, K. 2009. Geography of scientific knowledge: A proximity approach. Eindhoven Centre for Innovation Studies (ECIS), working paper 10.01. http://cms.tm.tue.nl/Ecis/Files/papers/wp2010/ wp1001.pdf. Accessed 4 June 2016.

Frenken, K., S. Hardeman, and J. Hoekman. 2009. “Spatial scientometrics: Toward a cumulative research program.” Journal of Informetrics 3 (3): 222–232.

Geographies of Science. 2010. Peter Meusburger, David N. Livingstone, Heike Jöns, Editors. London, New York; Springer Dordrecht Heidelberg, ISBN 978-90-481-8610-5 DOI 10.1007/978-90-481-8611-2.

Geographies of Knowledge and Power. 2010. Peter Meusburger, David N. Livingstone, Heike Jöns, Editors. London, New York; Springer Dordrecht Heidelberg. 347 p.  DOI 10.1007/978-90-481-8611-2.

Gunn, S. 2001. “The spatial turn: Changing history of space and place”. In: S. Gunn & R. J. Morris (Eds.), Identities in space: On tested terrains in the Western city science 1850. Aldershot: Asghate.

Knowledge and space. 2016. Peter Meusburger, David N. Livingstone, Heike Jöns, Editors. London, New York; Springer Dordrecht Heidelberg, ISBN 978-90-481-8610-5 DOI 10.1007/978-90-481-8611-2.

Livingstone, D. N. 2003. “Putting Science in Its Place: Geographies of Scientific Knowledge.” Chicago.

Livingstone, D. N. 1995. “The spaces of knowledge: Contributions towards a historical.” Geography of Science 13 (1): 5–34.

Livingstone, D. N. (2010). “Landscapes of Knowledge” In: Geographies of Science, edited by Peter Meusburger, David N. Livingstone, Heike Jöns, Editors. London, New York; Springer Dordrecht Heidelberg,

Naylor, S. 2005. “Introduction: Historical geographies of science—Places, contexts, cartographies.” British Journal for the History of Science, 38: 1–12.

Pang, Kam-yiu S. 2010. “Eponymy and life-narratives: The effect of foregrounding on proper names.” Journal of Pragmatics 42 (5): 1321-1349.

Scully, C., J. Langdon, and J. Evans. 2012. “Marathon of eponyms: 26 Zinsser-Engman-Cole syndrome (Dyskeratosis congenita).” Oral Diseases 18 (5): 522-523.

Shapin, S. 1998. “Placing the view from nowhere: Historical and sociological problems in the location of science.” Transactions of the Institute of British Geographers, New Series 23: 5–12.

Steffen, C. 2004. “The man behind the eponym – Lauren v. Ackerman and verrucous carcinoma of Ackerman.” American Journal of Dermatopathology 26 (4): 334-341. /10.1007/s11192-018-2646-5.

Veles-Cuartas, G. 2018. “Invisible Colleges 2.0: Eponymy as a Scientometric Tool.” Social Epistemology Review and Reply Collective 7 (3) 5-8.

Author Information: Markus Arnold, University of Klagenfurt, markus.arnold@aau.at

Arnold, Markus. “Is There Anything Wrong with Thomas Kuhn?.” Social Epistemology Review and Reply Collective 7, no. 5 (2018): 42-47.

The pdf of the article gives specific page references: Shortlink: https://wp.me/p1Bfg0-3Xs

Image by Rob Thomas via Flickr / Creative Commons

 

Twenty-two years after his death, Thomas Kuhn’s work is still able to provoke lively debates, where arguments are exchanged and competing interpretations of his theories are advanced. The Kuhnian Image of Science is a good example, as the book brings together ten scholars in a debate for and against Thomas Kuhn’s legacy. The question, the edited volume raises, is straightforward:

“Does the Kuhnian image of science provide an adequate model of scientific change? If we abandon the Kuhnian picture of revolutionary change and incommensurability […], what consequences would follow from that vis-à-vis our understanding of science as a social, epistemic endeavor?” (7)

In this review I will concentrate on the first two parts of the book, i.e. and in particular on the debate between those who are questioning (Mizrahi, Argamakova, Park, Sankey), and those who are defending Kuhn (Kindi, Patton), since their arguments are closely related. Therefore, I will discuss some of their major arguments in topological order.

Debating Kuhn’s Evidence

The editor Moti Mizrahi opens the debate in his introduction with a confrontational thesis: Kuhn, in his opinion, is responsible for an “infectious disease” (3), for “the pathological state of the field of philosophy of science in general, and general philosophy of science in particular” (3). Kuhn’s vice is his use of case studies (from the history of science) as arguments, although – according to Moti Mizrahi – they are nothing more than “anecdotal evidence” leading to “hasty generalizations” and “fallacious inductive reasoning” (6).

Hearing the trumpets of the troops ready to battle one is eager to learn how to do it right: How the standards of inductive reasoning within philosophy of science are re-erected. Yet, anticipating one of the results of this review, the “inductive reasoning” intended to refute Kuhn’s incommensurability thesis (found in the first part of the book) is actually its weakest part.

However, to understand the intricacy of this difficult task, we have to recognize, that it is not easy to support or falsify inductively a complex theory of science. Broadly speaking, in Kuhn’s account we should empirically observe sciences displaying at least four different manifestations: (1.) “proto-science” in the pre-paradigm phase, when there is no general consensus about theories, methods and standards, (2.) “normal science”, when scientists are most of the time focused on preserving, but also adapting existing paradigms to new problems and new scientific fields, (3.) sciences in a state of crisis, when more and more “anomalies” occur, which defy explanations in conformity with established procedures, and finally (4.) on rare occasions a “revolutionary” state, when different paradigms compete with each other and scientific theories based on one paradigm are to some extent “incommensurable” with those based on another paradigm.

There are good reasons to suppose that Kuhn’s somehow schematic and ideal-typical description of scientific change is too simple compared with the complexities shown by many historical case studies. Nevertheless, the counter-arguments under consideration brought forward against his model seem, paradoxically, to underestimate the complexity of Kuhn’s claims. For example, in Kuhn’s Incommensurability Thesis Mizrahi decides to discuss scientific change only in general.  He claims that Kuhn argues:

“Scientific change (specifically, revolutionary change) is characterized by taxonomic incommensurability.” (33)

The compounded phrase “[s]cientific change (specifically, revolutionary change)” indicates that, in Mizrahi’s interpretation, for Kuhn not all scientific change is per definition revolutionary. But then arguments against Kuhn’s theory should consider at least two kinds of scientific change separately: revolutionary change and those (commensurable) non-revolutionary scientific changes within “normal science.”

Keeping in mind that for Kuhn theory change is possible to a certain degree within normal science (only changing paradigms must be averted)[1], it is not clear, why Kuhn’s “image of science” should be dismissed because “as far as theory change is concerned” taxonomic incommensurability “is the exception rather than the rule” (38).[2]

Or another example, in Can Kuhn’s Taxonomic Incommensurability Be an Image of Science? where Seungbae Park comes to the conclusion that historical evidence shows that “scientific revolution is rare, taxonomic incommensurability is rare, and taxonomic commensurability is common” (61). It is, for similar reasons, unclear why this conclusion should not be commensurable with Kuhn’s description of normal science, since Kuhn claimed that normal science is common and scientific revolutions are rare.

However, this is not Park’s last argument about scientific change: He asks furthermore if we should not distinguish between the distant scientific past, when scientific revolutions were more common, and the recent past, “since most recent past theories have been stable, most present theories will also be stable” (70). Kuhn’s theory of revolutionary paradigm change is, in his opinion, first of all not appropriate for understanding the development of contemporary and future science.

Incommensurable Paradigms of Language?

After a discussion of the critical reception of Thomas Kuhn’s and Paul Feyerabend’s work and the objections raised against their claim that scientific theories or paradigms are incommensurable, Howard Sankey admits in The Demise of the Incommensurability Thesis that:

“the idea that there is conceptual change in science now seems commonplace. But the much-feared consequences, such as incomparability, communication breakdown, and irrationality now all seem to have been greatly overblown.” (88)

Prima facie it seems like a self-critical admission of an inappropriate former reception of Kuhn’s theory of incommensurability, especially by those philosophers of science who tried to fight “irrationality” with the means of referential semantics. However, Sankey seems to think that the dissolution of the exaggerated accusations of Kuhn’s critics somehow makes now Kuhn’s theory of incommensurability obsolete. Hence, Sankey can summarize:

“with the demise of the incommensurability thesis, the debate about scientific realism is free to proceed in a manner that is unencumbered by the semantic concerns about wholesale referential discontinuity that were prompted by the incommensurability thesis.” (88)

For Sankey, Kuhn’s concept of incommensurability is dead (87). He seems to blame Kuhn for the misguided interpretations of his opponents. It comes down to the argument: if it’s not possible to criticize Kuhn’s concept of incommensurability as “irrational” anymore, then Kuhn’s concept cannot claim any relevance for future discussions.

However, more importantly: These arguments against Kuhn are based on referential semantics, i.e. semantic concerns about referential continuity. Hence, what their objections against Kuhn’s incommensurability theory inadvertently show is, paradoxically, the incommensurability of competing paradigms of language. This becomes apparent, for example, when Mizrahi criticizes Kuhn’s sometimes-vague formulations, especially in his early Structure. Mizrahi refers to statements where Kuhn argues with caution:

“The normal-scientific tradition that emerges from a scientific revolution is not only incompatible but often [sic] actually incommensurable with that which has gone before.” (Kuhn 1996, 103)

Formulations such as this prompt Mizrahi to ask: If taxonomic incommensurability (TI):

“is not a general thesis about the nature of scientific change, then what is its explanatory value? How does (TI) help us in terms of understanding the nature of scientific change? On most accounts of explanation, an explanans must have some degree of generality […] But if (TI) has no degree of generality, then it is difficult to see what the explanatory value of (TI) is.” (37)

Kuhn could have responded that his arguments in Structure are explicitly based on Wittgenstein’s theory of “language games” with its central concept of “family resemblance”, which by definition does not allow the assumption that there are unambiguous conceptual boundaries and a distinguishing characteristic, which all or even most of the phenomena aligned by a concept have in common.[3]

Indeed, understanding Wittgenstein’s concept of “family resemblance” is central to understand Kuhn’s theory of “paradigms”, “paradigm shifts”, and the meaning of “incommensurability”.[4] Yet, it is possible to come to similar conclusions without referring to the late Wittgenstein: For example, Alexandra Argamakova despite of her negative evaluation of many of Kuhn’s arguments, unlike Mizrahi, is closer on this issue to Kuhn where she claims in Modeling Scientific Development: “distinct breakthroughs in science can be marked as revolutions, but no universal system of criteria for such appraisal can be formulated in a normative philosophical manner” (54).

Defending Kuhn’s Epistemology

In two of the book’s most interesting discussions of Kuhn’s epistemology, Vasso Kandi’s The Kuhnian Straw Man and Lydia Patton’s Kuhn, Pedagogy, and Practice, the allegation that Kuhn developed his theory on the basis of selected historical cases is refuted. Furthermore, Kindi, defending the innovative character of Kuhn’s work asks “for a more faithful reading”:

“Kuhn’s new image of science, which is actually a mosaic of different traditions, was not put together by generalizing from instances; it emerged once attention was drawn to what makes scientific practice possible, namely paradigms and what follows from them (normal science, anomalies, revolutions). In accordance with Kuhn’s own understanding of scientific revolutions, his revolution in the perception of science did not have to summon new facts or make new discoveries; it only needed a new perspective.” (104)

While Lydia Patton forcefully argues that:

“Kuhn’s original work did not restrict ‘paradigm’ to ‘theoretical framework’, nor did he restrict the perspective of scientific practice to the content of propositions with a truth-value. And it is mainly because Kuhn’s arguments in Structure are outside the semantic view, and focus instead on the practice of science, that they are interesting and fresh.” (124)

Both, Patton and Kindi, offer a close reading of Kuhn’s work, trying to give new perspectives on some of the more contested concepts in Kuhn’s epistemology.

The Social in Social Epistemology

One explicit aim of this edited volume is, as the editor asserts, to outline what consequences would follow from this debate for “our understanding of science as a social, epistemic endeavor” (7). But for this reviewer it is not obvious how the strong emphasis on discounting Kuhn’s incommensurability thesis in the first part of the book should lead to a better understanding of science as a social practice.

Kuhn’s theory of incommensurability of competing paradigms is precisely the point within his epistemology where value judgments and social decisions come into play. While traditionally those who defended the “progress of science” (cf. Sankey: 87) against what they saw as Kuhn’s “anti-realist” position were often those who wanted to defend the objectivity of science by excluding “external” influences, like the “social” and the political, from the scientific core.[5]

It is therefore important when talking about incommensurability of paradigms, and the possibility of a “communication breakdown”, to distinguish between two distinct meanings: (a) the impossibility to communicate at all because people do not understand each other’s language or paradigms and (b) the decision after a long and futile debate to end any further communication as a waste of time since no agreement can be reached. It is this second meaning, describing a social phenomenon, which is very common in science. Sankey argues against the first meaning when he declares:

“Given that scientists are able to understand what is said by theories whose terms are untranslatable into their own, no insuperable obstacle stands in the way of full communication between the ‘proponents of competing paradigms.’” (87)

While Sankey “wonders what all the fuss was about” (87), he has only shown (in accordance with Kuhn: cf. Kuhn 2000) that in theory full communication may be possible, but not that communication breakdowns are not common between scientists working with different paradigms. While on a theoretical level these workday problems to communicate may seem, for some philosophers of science, trivial. However, on the social level for working scientists, such communication breakdowns are often not only the reason for fraught relations between colleagues, but also for disciplinary segmentation and sometimes for re-drawing boundaries of scientific disciplines.

Perhaps it is no coincidence that in this volume those who discuss social as well as epistemological practices of scientists are not those who criticize incommensurability from a semantic point of view. Social and epistemological practices are considered in one way or the other by those defending Kuhn, like Kindi and Patton, and those whose main concern is to revise certain aspects of Kuhn’s image of science, like James A. Marcum, Barbara Gabriella Renzi & Giulio Napolitano, and David P. Rowbottom.

However, as I confined this review to the discussion of the first six articles I can only point out that the four remaining articles go beyond the topics discussed thus far and would deserve not only attentive readers but also a thorough discussion. They analyze, for example, scientific revolutions in mathematics (Andrew Aberdein), the role of evolutionary metaphors (Gabriella Renzi/Napolitano, Marcum) and of methodological contextualism in the philosophy of science (Rowbottom). Hence, although this edited volume has some weaknesses, there are several contributions, which open new avenues of thought about Kuhn, and are worth reading for those interested in Kuhn and in philosophy of science.

Contact details: markus.arnold@aau.at

References

Kuhn, Thomas S. The Structure of Scientific Revolutions. Chicago: University of Chicago Press, 1996.

Kuhn, Thomas S. „Commensurability, Comparability, Communicability,“ In Thomas S. Kuhn, Thomas S. The Road Since Structure. Philosophical Essays, 1970-1993, 33-57. Chicago: University of Chicago Press, 2000.

Mizrahi, Moti (Ed.) The Kuhnian Image of Science. Time for a Decisive Transformation? Lanham, MD: Rowman & Littlefield, 2018.

Wittgenstein, Ludwig. Philosophische Untersuchungen / Philosophical Investigations. Transl. by G. E. M. Anscombe, P. M. S. Hacker and Joachim Schulte. Oxford: Wiley-Blackwell, 2009.

[1] Kuhn discusses this type of theory change, for example, as divergent „articulation(s) of the paradigm“ (Kuhn 1996, 83; cf. Kuhn 1996, 23, 29-34, 122).

[2] Always on condition that, like Moti Mizrahi in this argument, we accept the concept of „incommensurability“ as defined by referential semantics. On some problems with „referential continuity“ as main argument against incommensurability see further below.

[3] “Instead of pointing out something common to all […], I’m saying that these phenomena have no one thing in common in virtue of which we use the same word for all – but there are many different kinds of affinity between them“ (Wittgenstein 2009, § 65) “I can think of no better expression to characterize these similarities than “family resemblances”; for the various resemblances between members of a family – build, features, colour of eyes, gait, temperament, and so on and so forth – overlap and criss-cross in the same way.” (§ 67)

[4] Cf. Kuhn 1996, Ch. 5. Later, Kuhn argued explicitly against referential semantics but then on the basis of a hermeneutic (holistic) theory of language (Kuhn 2000; but cf. Kuhn 1996, 128f.).

[5] This, despite the fact that Kuhn himself tried to restrict the relevant „social“ factors in his epistemology to social dynamics within scientific communities.

Author Information: Alfred Moore, University of York, UK, alfred.moore@york.ac.uk

Moore, Alfred. “Transparency and the Dynamics of Trust and Distrust.” Social Epistemology Review and Reply Collective 7, no. 4 (2018), 26-32.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3W8

Please refer to:

A climate monitoring camp at Blackheath in London, UK, on the evening of 28 August 2009.
Image by fotdmike via Flickr / Creative Commons

 

In 1961 the Journal of the American Medical Association published a survey suggesting that 90% of doctors who diagnosed cancer in their patients would choose not to tell them (Oken 1961). The doctors in the study gave a variety of reasons, including (unsubstantiated) fears that patients might commit suicide, and feelings of futility about the prospects of treatment. Among other things, this case stands as a reminder that, while it is a commonplace that lay people often don’t trust experts, at least as important is that experts often don’t trust lay people.

Paternalist Distrust

I was put in mind of this stunning example of communicative paternalism while reading Stephen John’s recent paper, “Epistemic trust and the ethics of science communication: against transparency, openness, sincerity and honesty.” John makes a case against a presumption of openness in science communication that – although his argument is more subtle – reads at times like a rational reconstruction of a doctor-patient relationship from the 1950s. What is disquieting is that he makes a case that is, at first glance, quite persuasive.

When lay people choose to trust what experts tell them, John argues, they are (or their behaviour can usefully be modelled as though they are) making two implicit judgments. The first, and least controversial, is that ‘if some claim meets scientific epistemic standards for proper acceptance, then [they] should accept that claim’ (John 2018, 77). He calls this the ‘epistemological premise’.

Secondly, however, the lay person needs to be convinced that the ‘[i]nstitutional structures are such that the best explanation for the factual content of some claim (made by a scientist, or group, or subject to some consensus) is that this claim meets scientific “epistemic standards” for proper acceptance’ (John 2018, 77). He calls this the ‘sociological premise.’ He suggests, rightly, I think, that this is the premise in dispute in many contemporary cases of distrust in science. Climate change sceptics (if that is the right word) typically do not doubt that we should accept claims that meet scientific epistemic standards; rather, they doubt that the ‘socio-epistemic institutions’ that produce scientific claims about climate change are in fact working as they should (John 2018, 77).

Consider the example of the so-called ‘climate-gate’ controversy, in which a cache of emails between a number of prominent climate scientists were made public on the eve of a major international climate summit in 2009. The emails below (quoted in Moore 2017, 141) were full of claims that might – to the unitiated – look like evidence of sharp practice. For example:

“I should warn you that some data we have we are not supposed [to] pass on to others. We can pass on the gridded data—which we do. Even if WMO [World Meteorological Organization] agrees, I will still not pass on the data. We have 25 or so years invested in the work. Why should I make the data available to you, when your aim is to try and find something wrong with it.”

“You can delete this attachment if you want. Keep this quiet also, but this is the person who is putting in FOI requests for all emails Keith and Tim have written and received re Ch 6 of AR4 We think we’ve found a way around this.”

“The other paper by MM is just garbage. … I can’t see either of these papers being in the next IPCC report. Kevin and I will keep them out somehow – even if we have to redefine what the peer-review literature is!”

“I’ve just completed Mike’s Nature trick of adding in the real temps to each series for the last 20 years (ie from 1981 onwards) amd [sic] from 1961 for Keith’s to hide the decline.”

As Phil Jones, then director of the Climate Research Unit, later admitted, the emails “do not read well.”[1] However, neither, on closer inspection,[2] did they show anything particularly out of the ordinary, and certainly nothing like corruption or fraud. Most of the controversy, it seemed, came from lay people misinterpreting the backstage conversation of scientists in light of a misleading image of what good science is supposed to look like.

The Illusions of Folk Philosophy of Science

This is the central problem identified in John’s paper. Many people, he suggests, evaluate the ‘sociological premise’ in light of a ‘folk philosophy of science’ that is worlds away from the reality of scientific practice. For this reason, revealing to a non-expert public how the sausage is made can lead not to understanding, ‘but to greater confusion’ (John 2017, 82). And worse, as he suggests happened in the climate-gate case, it might lead people to reject well-founded scientific claims in the mistaken belief that they did not meet proper epistemic standards within the relevant epistemic community. Transparency might thus lead to unwarranted distrust.

In a perfect world we might educate everybody in the theory and practice of modern science. In the absence of such a world, however, scientists need to play along with the folk belief in order to get lay audiences to adopt those claims that are in their epistemic best interests. Thus, John argues, scientists explaining themselves to lay publics should seek to ‘well-lead’ (the benevolent counterpart to mislead) their audience. That is, they should try to bring the lay person to hold the most epistemically sound beliefs, even if this means masking uncertainties, glossing complications, pretending more precision than you know to be the case, and so on.

Although John presents his argument as something close to heresy, his model of ‘well-leading’ speech describes a common enough practice. Economists, for instance, face a similar temptation to mask uncertainties and gloss complications and counter-arguments when engaging with political leaders and wider publics on issues such as the benefits and disadvantages of free trade policies.

As Dani Rodrik puts it:

As a professional economist, as an academic economist, day in and day out I see in seminars and papers a great variety of views on what the effects of trade agreements are, the ambiguous effects of deep integration. Inside economics, you see that there is not a single view on globalization. But the moment that gets translated into the political domain, economists have this view that you should never provide ammunition to the barbarians. So the barbarians are these people who don’t understand the notion of comparative advantage and the gains from trade, and you don’t want… any of these caveats, any of these uncertainties, to be reflected in the public debate. (Rodrik 2017, at c.30-34 mins).

‘Well-leading’ speech seems to be the default mode for experts talking to lay audiences.

An Intentional Deception

A crucial feature of ‘well-leading’ speech is that it has no chance of working if you tell the audience what you are up to. It is a strategy that cannot be openly avowed without undermining itself, and thus relies on a degree of deception. Furthermore, the well-leading strategy only works if the audience already trusts the experts in question, and is unlikely to help – and is likely to actively harm expert credibility – in context where experts are already under suspicion and scrutiny. John thus admits that this strategy can backfire if the audience is made aware of some of the hidden complications, and worse, as was case of in climate-gate, if it seems the experts actively sought to evade demands for transparency and accountability (John 2017, 82).

This puts experts in a bind: be ‘open and honest’ and risk being misunderstood; or engage in ‘well-leading’ speech and risk being exposed – and then misunderstood! I’m not so sure the dilemma is actually as stark as all that, but John identifies a real and important problem: When an audience misunderstands what the proper conduct of some activity consists in, then revealing information about the conduct of the activity can lead them to misjudge its quality. Furthermore, to the extent that experts have to adjust their conduct to conform to what the audience thinks it should look like, revealing information about the process can undermine the quality of the outcomes.

One economist has thus argued that accountability works best when it is based on information about outcomes, and that information about process ‘can have detrimental effects’ (Prat 2005: 863). By way of example, she compares two ways of monitoring fund managers. One way is to look at the yearly returns. The other way (exemplified, in her case, by pension funds), involves communicating directly with fund managers and demanding that they ‘explain their investment strategy’ (Prat 2005, 870). The latter strategy, she claims, produces worse outcomes than those monitored only by their results, because the agents have an incentive to act in a way that conforms to what the principal regards as appropriate rather than what the agent regards as the most effective action.

Expert Accountability

The point here is that when experts are held accountable – at the level of process – by those without the relevant expertise, their judgment is effectively displaced by that of their audience. To put it another way, if you want the benefit of expert judgment, you have to forgo the urge to look too closely at what they are doing. Onora O’Neill makes a similar point: ‘Plants don’t flourish when we pull them up too often to check how their roots are growing: political, institutional and professional life too may not flourish if we constantly uproot it to demonstrate that everything is transparent and trustworthy’ (O’Neill 2002: 19).

Of course, part of the problem in the climate case is that the outcomes are also subject to expert interpretation. When evaluating a fund manager you can select good people, leave them alone, and check that they hit their targets. But how do you evaluate a claim about likely sea-level rise over the next century? If radical change is needed now to avert such catastrophic effects, then the point is precisely not to wait and see if they are right before we act. This means that both the ‘select and trust’ and the ‘distrust and monitor’ models of accountability are problematic, and we are back with the problem: How can accountability work when you don’t know enough about the activity in question to know if it’s being done right? How are we supposed to hold experts accountable in ways that don’t undermine the very point of relying on experts?

The idea that communicative accountability to lay people can only diminish the quality either of warranted trust (John’s argument) or the quality of outcomes (Prat’s argument) presumes that expert knowledge is a finished product, so to speak. After all, if experts have already done their due diligence and could not get a better answer, then outsiders have nothing epistemically meaningful to add. But if expert knowledge is not a finished product, then demands for accountability from outsiders to the expert community can, in principle, have some epistemic value.

Consider the case of HIV-AIDS research and the role of activists in challenging expert ideas of what constituted ‘good science’ in conduct of clinical trials. In this engagement they ‘were not rejecting medical science,’ but were rather “denouncing some variety of scientific practice … as not conducive to medical progress and the health and welfare of their constituency” (Epstein 1996: 2). It is at least possible that the process of engaging with and responding to criticism can lead to learning on both sides and the production, ultimately, of better science. What matters is not whether the critics begin with an accurate view of the scientific process; rather, what matters is how the process of criticism and response is carried out.

On 25 April 2012, the AIDS Coalition to Unleash Power (ACT UP) celebrated its 25th anniversary with a protest march through Manhattan’s financial district. The march, held in partnership with Occupy Wall Street, included about 2000 people.
Image by Michael Fleshman via Flickr / Creative Commons

 

We Are Never Alone

This leads me to an important issue that John doesn’t address. One of the most attractive features of his approach is that he moves beyond the limited examples, prevalent in the social epistemology literature, of one lay person evaluating the testimony of one expert, or perhaps two competing experts. He rightly observes that experts speak for collectives and thus that we are implicitly judging the functioning of institutions when we judge expert testimony. But he misses an analogous sociological problem on the side of the lay person. We rarely judge alone. Rather, we use ‘trust proxies’ (MacKenzie and Warren 2012).

I may not know enough to know whether those climate scientists were not doing good science, but others can do that work for me. I might trust my representatives, who have on my behalf conducted open investigations and inquiries. They are not climate scientists, but they have given the matter the kind of sustained attention that I have not. I might trust particular media outlets to do this work. I might trust social movements.

To go back to the AIDS case, ACT-UP functioned for many as a trust proxy of this sort, with the skills and resources to do this sort of monitoring, developing competence but with interests more closely aligned with the wider community affected by the issue. Or I might even trust the judgments of groups of citizens randomly selected and given an opportunity to more deeply engage with the issues for just this purpose (see Gastil, Richards, and Knobloch 2014).

This hardly, on its own, solves the problem of lay judgment of experts. Indeed, it would seem to place it at one remove and introduce a layer of intermediaries. But it is worth attending to these sorts of judgments for at least two reasons. One is because, in a descriptive sense, this is what actually seems to be going on with respect to expert-lay judgment. People aren’t directly judging the claims of climate scientists, and they’re not even judging the functioning of scientific institutions; they’re simply taking cues from their own trusted intermediaries. The second is that the problems and pathologies of expert-lay communication are, in large part, problems with their roots in failures of intermediary institutions and practices.

To put it another way, I suspect that a large part of John’s (legitimate) concern about transparency is at root a concern about unmediated lay judgment of experts. After all, in the climate-gate case, we are dealing with lay people effectively looking over the shoulders of the scientists as they write their emails. One might have similar concerns about video monitoring of meetings: they seem to show you what is going on but in fact are likely to mislead you because you don’t really know what you’re looking at (Licht and Naurin 2015). You lack the context and understanding of the practice that can be provided by observers, who need not themselves be experts, but who need to know enough about the practice to tell the difference between good and bad conduct.

The same idea can apply to transparency of reasoning, involving the demand that actors give a public account of their actions. While the demand that authorities explain how and why they reached their judgments seems to fall victim to the problem of lay misunderstanding, it also offers a way out of it. After all, in John’s own telling of the case, he explains in a convincing way why the first impression (that the ‘sociological premise’ has not been fulfilled) is misleading. The initial scandal initiated a process of scrutiny in which some non-experts (such as the political representatives organising the parliamentary inquiry) engaged in closer scrutiny of the expert practice in question.

Practical lay judgment of experts does not require that lay people become experts (as Lane 2014 and Moore 2017 have argued), but it does require a lot more engagement than the average citizen would either want or have time for. The point here is that most citizens still don’t know enough to properly evaluate the sociological premise and thus properly interpret information they receive about the conduct of scientists. But they can (and do) rely on proxies to do the work of monitoring and scrutinizing experts.

Where does this leave us? John is right to say that what matters is not the generation of trust per se, but warranted trust, or an alignment of trust and trustworthiness. What I think he misses is that distrust is crucial to the possible way in which transparency can (potentially) lead to trustworthiness. Trust and distrust, on this view, are in a dynamic relation: Distrust motivates scrutiny and the creation of institutional safeguards that make trustworthy conduct more likely. Something like this case for transparency was made by Jeremy Bentham (see Bruno 2017).

John rightly points to the danger that popular misunderstanding can lead to a backfire in the transition from ‘scrutiny’ to ‘better behaviour.’ But he responds by asserting a model of ‘well-leading’ speech that seems to assume that lay people already trust experts, and he thus leaves unanswered the crucial questions raised by his central example: What are we to do when we begin from distrust and suspicion? How we might build trustworthiness out of distrust?

Contact details: alfred.moore@york.ac.uk

References

Bruno, Jonathan. “Vigilance and Confidence: Jeremy Bentham, Publicity, and the Dialectic of Trust and Distrust.” American Political Science Review, 111, no. 2 (2017) pp. 295-307.

Epstein, S. Impure Science: AIDS, Activism and the Politics of Knowledge. Berkeley and Los Angeles, CA: University of California Press, 1996.

Gastil, J., Richards, R. C., & Knobloch, K. R. “Vicarious deliberation: How the Oregon Citizens’ Initiative Review influenced deliberation in mass elections.” International Journal of Communication, 8 (2014), 62–89.

John, Stephen. “Epistemic trust and the ethics of science communication: against transparency, openness, sincerity and honesty.” Social Epistemology: A Journal of Knowledge, Culture and Policy 32, no. 2 (2017) 75-87.

Lane, Melissa. “When the Experts are Uncertain: Scientific Knowledge and the Ethics of Democratic Judgment.” Episteme 11, no. 1 (2014) 97-118.

Licht, Jenny de Fine, and Daniel Naurin. “Open Decision-Making Procedures and Public Legitimacy: An Inventory of Causal Mechanisms”. In Jon Elster (ed), Secrecy and Publicity in Votes and Debates. Cambridge: Cambridge University Press (2015), 131-151.

MacKenzie, Michael, and Mark E. Warren, “Two Trust-Based Uses of Minipublics.” In John Parkinson and Jane Mansbridge (eds.) Deliberative Systems. Cambridge: Cambridge University Press (2012), 95-124.

Moore, Alfred. Critical Elitism: Deliberation, Democracy, and the Politics of Expertise. Cambridge: Cambridge University Press, 2017.

Oken, Donald. “What to Tell Cancer Patients: A Study of Medical Attitudes.” Journal of the American Medical Association 175, no. 13 (1961) 1120-1128.

O’Neill, Onora. A Question of Trust. Cambridge: Cambridge University Press, 2002.

Prat, Andrea. The Wrong Kind of Transparency. The American Economic Review 95, no. 3 (2005), 862-877.

[1] In a statement released on 24 November 2009, http://www.uea.ac.uk/mac/comm/media/press/2009/nov/cruupdate

[2] One of eight separate investigations was by the House of Commons select committee on Science and Technology (http://www.publications.parliament.uk/pa/cm200910/cmselect/cmsctech/387/38702.htm).

Author Information: Gabriel Vélez-Cuartas, Universidad de Antioquia, gjaime.velez@udea.edu.co

Vélez-Cuartas, Gabriel. “Invisible Colleges 2.0: Eponymy as a Scientometric Tool.” Social Epistemology Review and Reply Collective 7, no. 3 (2018): 5-8.

Please refer to:

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3Vd

The corridors of an invisible college. Image from Justin Kern via Flickr / Creative Commons

 

Merton’s idea of eponymy as a prize for scientists, perhaps the most great of incentives, relatively addressed for a few ones, is revisited in the text from Collazo et al. An idea exposed nearly as a footnote in Merton’s Sociology of Science let open in this text two ideas that can be amplified as opportunities to go a step further in understanding scientific dynamics: (1) The idea of a literary figure as catalyzer of cognitive evolution of scientific communities; (2) the claims for geographical priority to show relevance in the hierarchy of science structures.

Faculty of the Invisible Colleges

(1) Derek de Solla Price (1963) and Diane Crane (1972) developed in the sixties and seventies of the last century the idea of invisible colleges. Those invisible colleges merged the idea of scientific growth due to chained interactions that made possible diffusion of innovations in cycles of exponential and linear growth. This statistic idea of growth has been related to the idea of paradigmatic revolutions in Kuhn’s ideas. These interactions determined the idea of a cognitive dynamic expressed in networks of papers linked by common references in Crane and De Solla Price. In other words, knowledge growth is possible because there are forms of interactions that make possible the construction of communities.

This idea has not evolved in time and appears in different works as: institutionalized communities combining co-authorship networks and citation indexes (Kretschermer 1994), social networks of supervisors, students and co-workers (Verspagen and Werker 2003; Brunn and O’Lear 1999; cultural circles (Chubin 1985); collaboration networks and preferential attachment (Verspagen and Werker 2004; Zuccala 2006).

More recently, the cognitive dynamic related to the other side of the definition of invisible colleges have been some advances focused on detecting cognitive communities. For instance, studies of bibliographic coupling based on similarity algorithms (Leydesdorff 2008; Colliander and Ahlgren 2012; Steinert and Hoppe 2017; Ciotti et al. 2016); hybrid techniques mixing different similarity measures, modularity procedures, and text- and citation-based analysis (Glänzel and Thijs 2017); and the explicit merge made by Van Raan (2014), he proposes a bibliometric analysis mixing co-word analysis, co-citation, and bibliographic coupling to describe invisible colleges dynamics.

Those advances in analysis claim for a transformation of the concept of invisible colleges. The determination of cognitive dynamics by interactions is on the shell. Indeed, different levels of hierarchies and determinations in multilayer networks are arising. This means that collaboration networks can be seen as local interactions embedded in a more global set of relationships shaped by all kind of scientific communications chained in networks of references (Luhmann, 1996).

Eponymy in scientific communication gives a sign of these dynamics. We agree that in the first level of interactions eponymy can describe prestige dynamics, accumulation of social or scientific capital as Bourdieu can describe in his theory of fields. Nevertheless, in a global context of the scientific system, Eponymy acts as a code that catalyzes communication functions in the scientific production. Different programs emerge from the mention of Jerzy Plebanski in the literature (the eponym analyzed within the text from Collazo et al), nevertheless is a common sign for all this communities. The eponymy gives a kind of confidence, content to be trusted and the scientific small masses confirm that by the grace of redundancy. Prestige becomes a communication function, more important than a guide for address the interaction.

How the Eponym Stakes an Invisible College’s Claim

(2) In this direction, the eponym appears as a rhetoric strategy in a semantic context of a determined scientific area, a partial system within the scientific form to communicate debates, controversies and research results. The geographical issue disappears in a way for this system. Cognitively, Jerzy Plebanski is a physicist; a geographical claim for the contributions seems distant to the discussion about the formation of invisible colleges or scientific communities.

Nevertheless, there are two underlying dynamics related to the space as category. One is the outlined dynamic of diffusion of knowledge. The eponym made itself stronger as a figure as can be redundant in many places. Diffusion is related here with dispersion. The strength of eponymy is due to the reach of dispersion that have emerged from redundancy of his name in different global spaces. It means penetration too.

The second is that scientific communities are locally situated and they are possible due to an economic and political context. It can be said that a scientific system needs roots on contexts that facilitate a scientific ethos. The modern expansion through colonies around the world left as a legacy the scientific way as a social function installed in almost every culture. But the different levels of institutional development affect the formation of local scientific communities conditioned by: the struggle between economic models based or non-based on scientific and technological knowledge (Arocena & Sutz, 2013); cultural coloniality (Quijano, 2007); the openness of science and the concentration of knowledge in private companies as part of a regime of intellectual property (Vélez Cuartas et al, 2018).

In other words, the claim for the work of Jerzy Plebanski as a Mexican and the appearance of eponym in Latin American lands borne as an exclamation. The acknowledgement of Latin American science is a kind of reaffirmation. In logic of scientific system observed from the Global North it seems a trivial issue, where a dictionary of scientific eponyms can list more than 9,000 renamed scientists. The geographical issue plays in two sides to comprehend this dynamic: from one side, the penetration of a global scientific form of communication, that is expansion of the system. This means growing of cognitive capacities, growth of collective intelligence under the ethos of science. Locally, express conditions of possibility of appearance of scientific communities and their consolidation.

The eponymy appears not as signal of prestige but as indicator of scientific growing as form of organization and specialization. Although Plebanski is a foreign last name, the possibility to stay there, to develop his work within that place, and to reach a symbolic status in a semantic community that is organized in a network of meaning around his work, express self-organization dynamics of science. Then eponym not only gives a function to indicate prestige, shows a geographical penetration of scientific institutions and global dynamics of scientific systems.

The work of Collazo et al shows an important step to induce analysis on other areas of sociology of science and social epistemology. Introduce the rhetoric figures as a cybernetic instrument that make able to observe systemic possibilities of scientific community formation. Eponymy as a Scientometric tool sounds good as a promising methodology.

Contact details: gjaime.velez@udea.edu.co

References

Arocena, R., & Judith Sutz. (2013). Innovación y democratización del conocimiento como contribución al desarrollo inclusivo. In Sistemas de Innovación para un Desarrollo Inclusivo: la experiencia latinoamericana (pp. 19–34). México, D.F: Foro Consultivo Científico y Tecnológico AC. Retrieved from https://www.researchgate.net/publication/301805107_Ciencia_tecnologia_e_innovacion_para_un_desarrollo_inclusivo_en_Colombia

Brunn, S. D., & O’Lear, S. R. (1999). Research and communication in the “invisible college” of the Human Dimensions of Global Change, 9, 285–301. doi:10.1016/S0959-3780(99)00023-0

Chubin, D. E. (1985). Beyond invisible colleges: Inspirations and aspirations of post-1972 social studies of science. Scientometrics, 7, 221–254. doi:10.1007/BF02017148

Ciotti, V., Bonaventura, M., Nicosia, V., Panzarasa, P., & Latora, V. (2016). Homophily and missing links in citation networks. EPJ Data Science, 5(1). doi:10.1140/epjds/s13688-016-0068-2

Colliander, C., & Ahlgren, P. (2012). Experimental comparison of first and second-order similarities in a scientometric context. Scientometrics, 90(2), 675–685. doi:10.1007/s11192-011-0491-x

Crane, D. (1972). Invisible colleges: Diffusion of knowledge in scientific communities. Chicago & London: The university of Chicago Press. ISBN: 0-226-11857-6

De Solla Price, D (1963). Little Science, Big Science. Columbia University Press, New York. ISBN: 0-231-04957-9

Glänzel, W., & Thijs, B. (2017). Using hybrid methods and “core documents” for the representation of clusters and topics: the astronomy dataset. Scientometrics, 111(2), 1071–1087. doi:10.1007/s11192-017-2301-6

Kretschmer, H. (1994). Coauthorship networks of invisible-colleges and institutionalized communities. Scientometrics, 30(1), 363–369. doi:10.1007/BF02017234

Leydesdorff, L. (2008). On the normalization, and visualization of author cocitation data: Salton’s cosine versus the jaccard index. Journal of the American Society for Information Science and Technology, 59 (1), pp. 77-85. doi: 10.1002/asi.20732

Luhmann, Niklas (1996). La ciencia de la sociedad. Rubí: Anthropos. ISBN: 9788476584910

Quijano, A. Coloniality and Modernity/Rationality. Cultural Studies 21 (2-3) (March/May 2007): 168–178.

Steinert, L., & Hoppe, H. U. (2017). A comparative analysis of network-based similarity measures for scientific paper recommendations. In Proceedings – 2016 3rd European Network Intelligence Conference, ENIC 2016 (pp. 17–24). Institute of Electrical and Electronics Engineers Inc., doi:10.1109/ENIC.2016.011

Van Raan, A. F. J. (2014). Advances in bibliometric analysis: research performance assessment and science mapping. In: W. Blockmans, L. Engwall, D. Weaire (eds.). Bibliometrics: Use and Abuse in the Review of Research Performance. Wenner-Gren International Series Vol. 87. (pp.17-28). London: Portland Press Ltd., ISBN: 9781855781955.

Vélez Cuartas, G (2018). Validación y evaluación en las ciencias sociales y humanas. En: Vélez Cuartas, G; Aristizábal, C; Piazzini, C; Villega, L; Vélez Salazar, G; Masías Nuñez, R (EDS). Investigación en ciencias sociales, humanidades y artes. Debates para su valoración. Medellín: Universidad de Antioquia, Universidad de los Andes,  pp 91-182. ISBN: 978-958-5413-60-3

Verspagen, B. B., & Werker, C. (2003). The Invisible College of The Economics of Innovation and Technological Change. Estudios de Economía Aplicada, diciembre, 393-419. Retrieved from http://www.redalyc.org/articulo.oa?id=30121301. Accessed 25 January 2017.

Verspagen, B. B., & Werker, C. (2004). Keith Pavitt and the Invisible College of the Economics of Technology and Innovation. Research Policy, 33, 1419–1431. doi:10.1016/j.respol.2004.07.010

Zuccala, A. (2006). Modeling the invisible college. Journal of the Association for Information Science and Technology, 57, 152–168. doi:10.1002/asi.20256

Author Information: Javier Zavala Rayas, Universidad Autónoma de Zacatecas, México, jzavala@uaz.edu.mx

Rayas, Javier Zavala. “Reply to Liberman and López Olmedo’s ‘Psychological Meaning of “Coauthorship” among Scientists’.” Social Epistemology Review and Reply Collective 6, no. 9 (2017): 70-72.

The PDF of the article gives specific page numbers. Shortlink: http://wp.me/p1Bfg0-3KF

Please refer to:

Image credit: Novartis AG, via flickr

To examine scientists, and science itself, from a social sciences perspective helps us reach partial agreements. Although one may agree neither with the methodology used, nor the outcome, such research invites discussion and diverse positions that enrich the dialogue and, ideally, open avenues for future research. Research on coauthorship—the object of Liberman and López Olmedo’s (2017) work with scientists from different areas—helps develop a perspective not only on its meaning, but also links other aspects of the study of scientists from diverse areas such as psychology and sociology.

Scientific communication lends a fundamental and useful process from which to analyze science. Scientific communication possesses many different aspects, processes and cycles—it may start casually, starting with conversations face-to-face, exchanging ideas and points of view through email—that may establish a permanent interaction leading to a scientific article published by coauthors. Through their interactions the participants’ lives, in one way or another, are impacted. Given these interactions, and given that both the concepts of ‘collaboration’ and ‘coauthorship’ are used in different ways in scientific communication, Lieberman and López Olmedo’s research is especially relevant.

Science leads to social progress, yet it seems difficult to speculate how much farther it can advance. Despite these advancements, we find certain words less frequently used by scientists at the beginning of their investigations. Advancing science requires consensus in a particular scientific field. Lieberman and López Olmedo used the method of natural semantic networks in order to describe the results from the psychological meaning of a word, words or terms, used as stimulus—in this case asking what ‘co-author’ means in four scientific knowledge areas.

Lieberman and López Olmedo note that ‘teamwork’ and ‘collaboration’ appear as the first two words that define ‘coauthor’ in three of the four groups (except chemistry) of researchers studied. On one hand, it is important to see the contribution the professional role of ‘scientist’ plays in defining these concepts. On the other hand, it is evident there are social and personal features in defining words. For example, in three disciplines appears, among the 15 reported words, ‘friendship’ (except in the biological sciences). It would be interesting to know if the word appears in chemistry even if it is not part of the first 15 words—perhaps that data should be requested from López Olmedo. There are few articles that describe friendship as a defining factor in the formation of groups, or research teams, and their day-to-day activities; besides, chemists consider ‘comprehension’ as a defining term. However, it is unknown if the term relates to the comprehension of people, or to knowledge in a research area particular to chemistry.

‘Active participation’ is another term describing a coauthor. The term appears in physics, mathematics, and in the biological sciences, but not in chemistry. Perhaps this outcome reflects specific characteristics of the interactions in these knowledge areas. Further analyzing the results, the term ‘common interests’ appears in third place among physicists and mathematicians and in the penultimate place within biological sciences, but it does not appear with the chemists. A certain uniformity exists in mathematics and physics. We find the word ‘discussion’ in fourth place within physicists, sixth place within mathematicians and biological sciences, but it was not found among the chemists.

‘Trust’ and ‘honesty’ are defining words found only among chemists. We often link them to characteristics established from the ethics and morals that are a part of scientific progress. The defining word ‘work’ appears in the four disciplines—as an activity to complete in order for an investigation to progress. The defining word ‘commitment’ is found in biological sciences and chemistry. However, we should not dismiss ‘commitment’ as something not part of physicists or mathematicians. But because ‘commitment’ does not appear as a defining word, it invites future research into the concept of commitment (perhaps using Lieberman and López Olmedo’s work as a model).

‘Human resources training’ appears as a defining term with physicists and mathematicians, possibly as result to a low demand from students for those disciplines (at least in Mexico).  It is considered important to promote an increase in researchers in physics and mathematics to continue contributing scientific knowledge and advancements.

A relevant aspect of the “inner cycle” of scientific communication is the description of informal processes. Such communication can happen in the hallway, such as a chance encounter, and is part of the skills developed for each researcher to interact with peers that allows future collaborations or research developments. We also have the “outer cycle” of scientific communication —the result of a process completed by the coauthors in the form of a scientific article. Notably, coauthorship can get difficult when assigning the order of the coauthors (except for the first author) given the relevance or importance of contributions to the final product. In many cases, this discussion leads to conflict. Such conflict can be an object of study extended out from the dynamics of scientific coauthorship.

Lieberman and López Olmedo’s findings open the possibility for further studies. For example, to know what ‘coauthor’ means in an area of specialization, such as high energy physics, given the likely differences in the nature of specialist work (as opposed to physics as a whole), the differences among research teams, and group dynamics. In the chemists’ research group, for example, some discrepancies were found regarding how the defining words used by Lieberman and López Olmedo were understood. These discrepancies invite us to do more research about chemists—into defining words in particular—perhaps starting with organic and inorganic chemists (as two general classifications) to find out more about their conception of the scientific work. Hopefully, we will get pleasant surprises

The idea of publish or perish becomes a dynamic in the exchange of theoretic positions about topics of investigation, and the exposure and advancement of scientific knowledge. This idea became present in Liberman and Lopez Olmedo’s examination into the defining word ‘productivity’. Such work, in Mexico, could result in public policies on science. For example, in looking at collaboration as a tool of ‘high production’ and ‘rewards’—sometimes not knowing the content of published articles, productivity and other publications—such words are common in all areas of research. We want to assume that the primary interest is to contribute knowledge in respective disciplines, support scientific growth and its impact on ordinary social life.

The absence of notes and references in my reply comes as I wanted to reflect my work sessions and discussions with my mentor, Dr. Sofia Liberman. These sessions lead to a beautiful friendship. Thank you, Sofi, for your lessons of life. I would like to offer a public posthumous acknowledgment of Dr. Sofia Liberman’s work as both a great scientist, and as an originator of studies about science and scientists.

Author Information: Markova Lyudmila, Russian Academy of Science, markova.lyudmila2013@yandex.ru

Markova, Lyudmila. “The Text in Science and Religion.” Social Epistemology Review and Reply Collective 4, no. 8 (2015): 7-8.

The PDF of the article gives specific page numbers. Shortlink: http://wp.me/p1Bfg0-2dl

Please refer to:

  • Markova, Lyudmila. “A New Look at Known Issues.”Social Epistemology Review and Reply Collective 4, no. 7 (2015): 1-5.

text

Image credit: Michael Riedel, via flickr

I re-discovered on reading Steve Fuller’s comment—(http://bit.ly/1K17uXl) on “A New Look at Known Issues”—that a well-known idea, placed in a new context, can contribute to the birth of an unexpected perspective on the topic at hand. I refer to Fuller’s opinion that both science and religion are tied to texts, and that this feature is essential to both enterprises. Fuller states: “The significance of reality’s ‘textuality’ or even ‘bookishness’ is that it presumes a sense of communicability that overcomes distance in time and space.” Let’s reflect on Fuller’s words, where communication is the key idea.  Continue Reading…