Archives For scientific practice

Author Information: Moti Mizrahi, Florida Institute of Technology, mmizrahi@fit.edu.

Mizrahi, Moti. “Why Scientific Knowledge Is Still the Best.” Social Epistemology Review and Reply Collective 7, no. 9 (2018): 18-32.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-40I

For context, see also:

Image by Specious Reasons via Flickr / Creative Commons

 

It is common knowledge among scholars and researchers that the norms of academic research dictate that one must enter an academic conversation by properly acknowledging, citing, and engaging with the work done by other scholars and researchers in the field, thereby showing that a larger conversation is taking place.[1] See, for example, Graff and Birkenstein (2018, 1-18) on “entering the conversation.” Properly “entering the conversation” is especially important when one aims to criticize the work done by other scholars and researchers in the field.

In my previous reply to Bernard Wills’ attack on Weak Scientism (Wills 2018a), I point out that Wills fails in his job as a scholar who aims to criticize work done by other scholars and researchers in the field (Mizrahi 2018b, 41), since Wills does not cite or engage with the paper in which I defend Weak Scientism originally (Mizrahi 2017a), the very thesis he seeks to attack. Moreover, he does not cite or engage with the papers in my exchange with Christopher Brown (Mizrahi 2017b; 2018a), not to mention other works in the literature on scientism.

In his latest attack, even though he claims to be a practitioner of “close reading” (Wills 2018b, 34), it appears that Wills still has not bothered to read the paper in which I defend the thesis he seeks to attack (Mizrahi 2017a), or any of the papers in my exchange with Brown (Mizrahi 2017b; 2018a), as evidenced by the fact that he does not cite them at all. To me, these are not only signs of lazy scholarship but also an indication that Wills has no interest in engaging with my arguments for Weak Scientism in good faith. For these reasons, this will be my second and final response to Wills. I have neither the time nor the patience to debate lazy scholars who argue in bad faith.

On the Quantitative Superiority of Scientific Knowledge

In response to my empirical data on the superiority of scientific knowledge over non-scientific knowledge in terms of research output and research impact (Mizrahi 2017a, 357-359; Mizrahi 2018a, 20-22; Mizrahi 2018b, 42-44), Wills (2018b, 34) claims that he has “no firm opinion at all as to whether the totality of the sciences have produced more ‘stuff’ than the totality of the humanities between 1997 and 2017 and the reason is that I simply don’t care.”

I would like to make a few points in reply. First, the sciences produce more published research, not just “stuff.” Wills’ use of the non-count noun ‘stuff’ is misleading because it suggests that research output cannot be counted or measured. However, research output (as well as research impact) can be counted and measured, which is why we can use this measure to determine that scientific research (or knowledge) is better than non-scientific research (or knowledge).

Second, my defense of Weak Scientism consists of a quantitative argument and a qualitative argument, thereby showing that scientific knowledge is superior to non-scientific knowledge both quantitatively and qualitatively, which are the two ways in which one thing can be said to be better than another (Mizrahi 2017a, 354). If Wills really does not care about the quantitative argument for Weak Scientism, as he claims, then why is he attacking my defense of Weak Scientism at all?

After all, showing that “scientific knowledge is [quantitatively] better – in terms of research output (i.e. more publications) and research impact (i.e. more citations) – than non-scientific knowledge” is an integral part of my defense of Weak Scientism (Mizrahi 2017a, 358). To know that, however, Wills would have to read the paper in which I make these arguments for Weak Scientism (Mizrahi 2017a). In his (2018a) and (2018b), I see no evidence that Wills has read, let alone read closely, that paper.

Third, for someone who says that he “simply [doesn’t] care” about quantity (Wills 2018b, 34), Wills sure talks about it a lot. For example, Wills claims that a “German professor once told [him] that in the first half of the 20th Century there were 40,000 monographs on Franz Kafka alone!” (Wills 2018a, 18) and that “Shakespeare scholars have all of us beat” (Wills 2018a, 18). Wills’ unsupported claims about quantity turn out to be false, of course, as I show in my previous reply (Mizrahi 2018b, 42-44). Readers will notice that Wills does not even try to defend those claims in his (2018b).

Fourth, whether Wills cares about quantity or has opinions on the matter is completely beside the point. With all due respect, Wills’ opinions about research output in academic disciplines are worthless, especially when we have data on research output in scientific and non-scientific disciplines. The data show that scientific disciplines produce more research than non-scientific disciplines and that scientific research has a greater impact than non-scientific research (Mizrahi 2017a, 357-359; Mizrahi 2018a, 20-22; Mizrahi 2018b, 42-44).

Wills (2018b, 35) thinks that the following is a problem for Weak Scientism: “what if it were true that Shakespeare scholars produced more papers than physicists?” (original emphasis) Lacking in good arguments, as in his previous attack on Weak Scientism, Wills resorts to making baseless accusations and insults, calling me “an odd man” for thinking that literature would be better than physics in his hypothetical scenario (Wills 2018b, 35). But this is not a problem for Weak Scientism at all and there is nothing “odd” about it.

What Wills fails to understand is that Weak Scientism is not supposed to be a necessary truth. That is, Weak Scientism does not state that scientific knowledge must be quantitatively and qualitatively better than non-scientific knowledge. Rather, Weak Scientism is a contingent fact about the state of academic research. As a matter of fact, scientific disciplines produce better research than non-scientific disciplines do.

Moreover, the data we have (Mizrahi 2017a, 357-359; Mizrahi 2018a, 20-22; Mizrahi 2018b, 42-44) give us no reason to think that these trends in research output and research impact are likely to change any time soon. Of course, if Wills had read my original defense of Weak Scientism (Mizrahi 2017a), and my replies to Brown, he would have known that I have discussed all of this already (Mizrahi 2017b, 9-10; 2018a, 9-13).

Likewise, contrary to what Wills (2018b, 36, footnote 2) seems to think, there is nothing odd about arguing for a thesis according to which academic research produced by scientific disciplines is superior to academic research produced by non-scientific disciplines, “while leaving open the question whether non-scientific knowledge outside the academy may be superior to science” (original emphasis). If Wills were familiar with the literature on scientism, he would have been aware of the common distinction between “internal scientism” and “external scientism.”

See, for example, Stenmark’s (1997, 16-18) distinction between “academic-internal scientism” and “academic-external scientism” as well as Peels (2018, 28-56) on the difference between “academic scientism” and “universal scientism.” Again, a serious scholar would have made sure that he or she is thoroughly familiar with the relevant literature before attacking a research paper that aims to make a contribution to that literature (Graff and Birkenstein 2018, 1-18).

Wills also seems to be unaware of the fact that my quantitative argument for Weak Scientism consists of two parts: (a) showing that scientific research output is greater than non-scientific research output, and (b) showing that the research impact of scientific research is greater than that of non-scientific research (Mizrahi 2017a, 356-358). The latter is measured, not just by publications, but also by citations. Wills does not address this point about research impact in his attacks on Weak Scientism. Since he seems to be proud of his publication record, for he tells me I should search for his published papers on Google (Wills 2018b, 35), let me to illustrate this point about research impact by comparing Wills’ publication record to a colleague of his from a science department at his university.

According to Google Scholar, since completing his doctorate in Religious Studies at McMaster University in 2003, Wills has published ten research articles (excluding book reviews). One of his research articles was cited three times, and three of his research articles were cited one time each. That is six citations in total.

On the other hand, his colleague from the Physics program at Memorial University, Dr. Svetlana Barkanova, has published 23 research articles between 2003 and 2018, and those articles were cited 53 times. Clearly, in the same time, a physicist at Wills’ university has produced more research than he did (130% more research), and her research has had a greater impact than his (783% more impact). As I have argued in my (2017a), this is generally the case when research produced by scientific disciplines is compared to research produced by non-scientific disciplines (Table 1).

Table 1. H Index by subject area, 1999-2018 (Source: Scimago Journal & Country Rank)

H Index
Physics 927
Psychology 682
Philosophy 161
Literature 67

Reflecting on One’s Own Knowledge

In his first attack on Weak Scientism, Wills (2018a, 23) claims that one “can produce a potential infinity of knowledge simply by reflecting recursively on the fact of [one’s] own existence.” In response, I pointed out that Wills (2018a, 23) himself admits that this reflexive procedure applies to “ANY fact” (original capitalization), which means that it makes no difference in terms of the quantity of knowledge produced in scientific versus non-scientific disciplines.

As I have come to expect from him, Wills (2018b, 35) resorts to name-calling again, rather than giving good arguments, calling my response “sophism,” but he seems to miss the basic logical point, even though he admits again that extending one’s knowledge by reflexive self-reflection “can be done with any proposition at all” (Wills 2018b, 35). Of course, if “it can be done with any proposition at all” (Wills 2018b, 35; emphasis added), then it can be done with scientific propositions as well, for the set of all propositions includes scientific propositions.

To illustrate, suppose that a scientist knows that p and a non-scientist knows that q. Quantitatively, the amount of scientific and non-scientific knowledge is equal in this instance (1 = 1). Now the scientist reflects on her own knowledge that p and comes to know that she knows that p, i.e., she knows that Kp. Similarly, the non-scientist reflects on her knowledge that q and comes to know that she knows that q, i.e., she knows that Kq. Notice that, quantitatively, nothing has changed, i.e., the amount of scientific versus non-scientific knowledge is still equal: two items of scientific knowledge (p and Kp) and two items of non-scientific knowledge (q and Kq).

Wills might be tempted to retort that p may be an item of scientific knowledge but Kp is not because it is not knowledge that is produced by scientific procedures. However, if Wills were to retort in this way, then it would be another indication of sloppy scholarship on his part. In my original paper (Mizrahi 2017a, 356), and in my replies to Brown (Mizrahi 2017b, 12-14; Mizrahi 2018a, 14-15), I discuss at great length my characterization of disciplinary knowledge as knowledge produced by practitioners in the field. I will not repeat those arguments here.

Baseless Accusations of Racism and Colonialism

After raising questions about whether I am merely rationalizing my “privilege” (Wills 2018a, 19), Wills now says that his baseless accusations of racism and colonialism are “not personal” (Wills 2018b, 35). His concern, Wills (2018b, 35) claims, is “systemic racism” (original emphasis). As a white man, Wills has the chutzpah to explain (or white-mansplain, if you will) to me, an immigrant from the Middle East, racism and colonialism.

My people were the victims of ethnic cleansing and genocide, lived under British colonial rule, and are still a persecuted minority group. Since some of my ancestors died fighting the British mandate, I do not appreciate using the term ‘colonialism’ to describe academic disputes that are trifle in comparison to the atrocities brought about by racism and colonialism.

Perhaps Wills should have used (or meant to use) the term ‘imperialism’, since it is sometimes used to describe the expansion of a scientific theory into new domains (Dupré 1994). This is another sign of Wills’ lack of familiarity with the literature on scientism. Be that as it may, Wills continues to assert without argument that my “defense of weak-scientism is ideologically loaded,” that it implies “the exclusion of various others such as women or indigenous peoples from the socially sanctioned circle of knowers,” and that I make “hegemonic claims for science from which [I] stand to benefit” (Wills 2018b, 36).

In response, I must admit that I have no idea what sort of “ideologies” Weak Scientism is supposed to be loaded with, since Wills does not say what those are. Wills (2018b, 36) asserts without argument that “the position [I] take on scientism has social, political and monetary implications,” but he does not specify those implications. Nor does he show how social and political implications (whatever those are) are supposed to follow from the epistemic thesis of Weak Scientism (Mizrahi 2017a, 353). I am also not sure why Wills thinks that Weak Scientism implies “the exclusion of various others such as women or indigenous peoples from the socially sanctioned circle of knowers” (Wills 2018b, 36), since he provides no arguments for these assertions.

Of course, Weak Scientism entails that there is non-scientific knowledge (Mizrahi 2018b, 41). If there is non-scientific knowledge, then there are non-scientific knowers. In that case, on Weak Scientism, non-scientists are not excluded from “the circle of knowers.” In other words, on Weak Scientism, the circle of knowers includes non-scientists, which can be women and people of color, of course (recall Dr. Svetlana Barkanova). Contrary to what Wills seems to think, then, Weak Scientism cannot possibly entail “the exclusion of various others such as women or indigenous peoples from the socially sanctioned circle of knowers” (Wills 2018b, 36).

In fact, if it is “the exclusion of various others” that Wills (2018b, 36) is genuinely concerned about, then he is undoubtedly aware of the fact that it is precisely white men like him who are guilty of systematically excluding “various others,” such as women (Paxton et al. 2012) and people of color (Botts et al. 2014), from the academic discipline of philosophy (American Philosophical Association 2014). As anyone who is familiar with the academic discipline of philosophy knows, “philosophy faces a serious diversity problem” (Van Norden 2017b, 5). As Amy Ferrer (2012), Executive Director of the American Philosophical Association (APA), put it on Brian Leiter’s blog, Leiter Reports:

philosophy is one of the least diverse humanities fields, and indeed one of the least diverse fields in all of academia, in terms of gender, race, and ethnicity. Philosophy has a reputation for not only a lack of diversity but also an often hostile climate for women and minorities (emphasis added).

In light of the lack of diversity in academic philosophy, some have gone as far as arguing that contemporary philosophy is racist and xenophobic; otherwise, argues Bryan Van Norden (2017a), it is difficult to explain “the fact that the rich philosophical traditions of China, India, Africa, and the Indigenous peoples of the Americas are completely ignored by almost all philosophy departments in both Europe and the English-speaking world.”

In fact, Wills’ attacks on Weak Scientism illustrate how white men like him attempt to keep philosophy white and “foreigner-free” (Cherry and Schwitzgebel 2016). They do so by citing and discussing the so-called “greats,” which are almost exclusively Western men. Citations are rather scarce in Wills’ replies, but when he cites, he only cites “the greats,” like Aristotle and Augustine (see Schwitzgebel et al. 2018 on the “Insularity of Anglophone Philosophy”).

As for his claim that I “stand to benefit” (Wills 2018b, 36) from my defense of Weak Scientism, I have no idea what Wills is talking about. I had no idea that History and Philosophy of Science (HPS) and Science and Technology Studies (STS) “can often assert hegemony over other discourses” (Wills 2018b, 36). I bet this will come as a surprise to other HPS and STS scholars and researchers. They will probably be shocked to learn that they have that kind of power over other academic disciplines.

More importantly, even if it were true that I “stand to benefit” (Wills 2018b, 36) from my defense of Weak Scientism, nothing about the merit of my defense of Weak Scientism would follow from that. That is, to argue that Weak Scientism must be false because I stand to benefit from it being true is to argue fallaciously. In particular, it is an informal fallacy of the circumstantial ad hominem type known as “poisoning the well,” which “alleges that the person has a hidden agenda or something to gain and is therefore not an honest or objective arguer” (Walton and Krabbe 1995, 111).

It is as fallacious as arguing that climate change is not real because climate scientists stand to benefit from climate research or that MMR vaccines are not safe (e.g., cause autism) because medical researchers stand to benefit from such vaccines (Offit 2008, 213-214). These are the sort of fallacious arguments that are typically made by those who are ignorant of the relevant science or are arguing in bad faith.

In fact, the same sort of fallacious reasoning can be used to attack any scholar or researcher in any field of inquiry whatsoever, including Wills. For instance, just as my standing to benefit from defending Weak Scientism is supposed to be a reason to believe that Weak Scientism is false, or Paul Offit’s standing to gain from MMR vaccines is supposed to be a reason to believe that such vaccines are not safe, Wills’ standing to benefit from his attacks on Weak Scientism (e.g., by protecting his position as a Humanities professor) would be a reason to believe that his attacks on Weak Scientism are flawed.

Indeed, the administrators at Wills’ university would have a reason to dismiss his argument for a pay raise on the grounds that he stands to benefit from it (Van Vleet 2011, 16). Of course, such reasoning is fallacious no matter who is the target. Either MMR vaccines are safe and effective or they are not regardless of whether Offit stands to benefit from them. Climate change is real whether climate scientists stand to benefit from doing climate research. Likewise, Weak Scientism is true or false whether or not I stand to benefit from defending it.

Image by Maia Valenzuela via Flickr / Creative Commons

 

Revisiting the Joyce Scholar

Wills (2018b, 36) returns to his example of the Joyce scholar as an example of non-scientific knowledge “that come[s] from an academic context.” As I have already pointed out in my previous reply (Mizrahi 2018b, 41-42), it appears that Wills fails to grasp the difference between Strong Scientism and Weak Scientism. Only Strong Scientism rules out knowledge that is not scientific. On Weak Scientism, there is both scientific and non-scientific knowledge. Consequently, examples of non-scientific knowledge from academic disciplines other than scientific ones do not constitute evidence against Weak Scientism.

Relatedly, Wills claims to have demonstrated that I vacillate between Strong Scientism and Weak Scientism and cites page 22 of his previous attack (Wills 2018a, 22). Here is how Wills (2018a, 22) argues that I vacillate between Strong Scientism and Weak Scientism:

Perhaps it is the awareness of such difficulties that leads Mizhari [sic] to his stance of ‘Weak Scientism’. It is not a stance he himself entirely sticks to. Some of his statements imply the strong version of scientism as when he tells us the [sic] knowledge is “the scholarly work or research produced in scientific fields of study, such as the natural sciences, as opposed to non-scientific fields, such as the humanities” [Mizrahi 2018a, 22].

However, the full passage Wills cites as evidence of my vacillation between Strong Scientism and Weak Scientism is from the conclusion of my second reply to Brown (Mizrahi 2018a) and it reads as follows:

At this point, I think it is quite clear that Brown and I are talking past each other on a couple of levels. First, I follow scientists (e.g., Weinberg 1994, 166-190) and philosophers (e.g., Haack 2007, 17-18 and Peels 2016, 2462) on both sides of the scientism debate in treating philosophy as an academic discipline or field of study, whereas Brown (2017b, 18) insists on thinking about philosophy as a personal activity of “individual intellectual progress.” Second, I follow scientists (e.g., Hawking and Mlodinow 2010, 5) and philosophers (e.g., Kidd 2016, 12-13 and Rosenberg 2011, 307) on both sides of the scientism debate in thinking about knowledge as the scholarly work or research produced in scientific fields of study, such as the natural sciences, as opposed to non-scientific fields of study, such as the humanities, whereas Brown insists on thinking about philosophical knowledge as personal knowledge.

Clearly, in this passage, I am talking about how ‘knowledge’ is understood in the scientism debate, specifically, that knowledge is the published research or scholarship produced by practitioners in academic disciplines (see also Mizrahi 2017a, 353). I am not saying that non-scientific disciplines do not produce knowledge. How anyone can interpret this passage as evidence of vacillation between Strong Scientism and Weak Scientism is truly beyond me. To me, this amounts to “contextomy” (McGlone 2005), and thus further evidence of arguing in bad faith on Wills’ part.

Wills also misunderstands, as in his previous attack on Weak Scientism, the epistemic properties of unity, coherence, simplicity, and testability, and their role in the context of hypothesis testing and theory choice. For he seems to think that “a masterful exposition of Portrait of the Artist as Young Man will show the unity, coherence and simplicity of the work’s design to the extent that these are artistically desired features” (Wills 2018b, 36). Here Wills is equivocating on the meaning of the terms ‘unity’, ‘coherence’, and ‘simplicity’.

There is a difference between the epistemic and the artistic senses of these terms. For example, when it comes to novels, such as A Portrait of the Artist as Young Man, ‘simplicity’ may refer to literary style and language. When it comes to explanations or theories, however, ‘simplicity’ refers to the number of entities posited or assumptions taken for granted (Mizrahi 2016). Clearly, those are two different senses of ‘simplicity’ and Wills is equivocating on the two. As far as Weak Scientism is concerned, it is the epistemic sense of these terms that is of interest to us. Perhaps Wills fails to realize that Weak Scientism is an epistemic thesis because he has not read my (2017a), where I sketch the arguments for this thesis, or at least has not read it carefully enough despite claiming to be a practitioner of “close reading” (Wills 2018b, 34).

When he says that the Joyce scholar “tests [what he says] against the text,” Wills (2018b, 37) reveals his misunderstanding of testability once again. On Wills’ description of the work done by the Joyce scholar, what the Joyce scholar is doing amounts to accommodation, not novel prediction. I have already discussed this point in my previous reply to Wills (Mizrahi 2018b, 47) and I referred him to a paper in which I explain the difference between accommodation and novel prediction (Mizrahi 2012). But it appears that Wills has no interest in reading the works I cite in my replies to his attacks. Perhaps a Stanford Encyclopedia of Philosophy entry on the difference between accommodation and prediction would be more accessible (Barnes 2018).

Wills finds it difficult to see how the work of the Joyce scholar can be improved by drawing on the methods of the sciences. As Wills (2018b, 37) writes, “What in this hermeneutic process would be improved by ‘scientific method’ as Mizrahi describes it? Where does the Joyce scholar need to draw testable consequences from a novel hypothesis and test it with an experiment?” (original emphasis)

Because he sees no way the work of the Joyce scholar can benefit from the application of scientific methodologies, Wills thinks it follows that I have no choice but to say that the work of the Joyce scholar does not count as knowledge. As Wills (2018b, 37) writes, “It seems to me that only option for Mizrahi here is to deny that the Joyce scholar knows anything (beyond the bare factual information) and this means, alas, that his position once again collapses into strong scientism.”

It should be clear, however, that this is a non sequitur. Even if it is true that scientific methodologies are of no use to the Joyce scholar, it does not follow that the work of the Joyce scholar does not count as knowledge. Again, Weak Scientism is the view that scientific knowledge is better than non-scientific knowledge. This means that scientists produce knowledge using scientific methods, whereas non-scientists produce knowledge using non-scientific methods, it’s just that scientists produce better knowledge using scientific methods that are superior to non-scientific methods in terms of the production of knowledge. Non-scientists can use scientific methods to produce knowledge in their fields of inquiry. But even if they do not use scientific methods in their work, on Weak Scientism, the research they produce still counts as knowledge.

Moreover, it is not the case that scientific methodologies are of no use to literary scholars. Apparently, Wills is unaware of the interdisciplinary field in which the methods of computer science and data science are applied to the study of history, literature, and philosophy known as the “Digital Humanities.” Becoming familiar with work in Digital Humanities will help Wills understand what it means to use scientific methods in a literary context. Since I have already discussed all of this in my original paper (Mizrahi 2017a) and in my replies to Brown (Mizrahi 2017b; 2018a), I take this as another reason to think that Wills has not read those papers (or at least has not read them carefully enough).

To me, this is a sign that he is not interested in engaging with Weak Scientism in good faith, especially since my (2017a) and my replies to Brown are themselves instances of the use of methods from data science in HPS, and since I have cited two additional examples of work I have done with Zoe Ashton that illustrates how philosophy can be improved by the introduction of scientific methods (Ashton and Mizrahi 2018a and 2018b). Again, it appears that Wills did not bother to read (let alone read closely) the works I cite in my replies to his attacks.

Toward the end of his discussion of the Joyce scholar, Wills (2018b, 37) says that using scientific methods “may mean better knowledge in many cases.” If he accepts that using scientific methods “may mean better knowledge in many cases” (Wills 2018b, 37), then Wills thereby accepts Weak Scientism as well. For to say that using scientific methods “may mean better knowledge in many cases” (Wills 2018b, 37) is to say that scientific knowledge is generally better than non-scientific knowledge.

Of course, there are instances of bad science, just as there are instances of bad scholarship in any academic discipline. Generally speaking, however, research done by scientists using the methods of science will likely be better (i.e., quantitatively better in terms of research output and research impact as well as qualitatively better in terms of explanatory, predictive, and instrumental success) than research done by non-scientists using non-scientific methods. That is Weak Scientism and, perhaps unwittingly, Wills seems to have accepted it by granting that using scientific methods “may mean better knowledge in many cases” (Wills 2018b, 37).

Inference to the Best Explanation

In my (2017a), as well as in my replies to Brown (Mizrahi 2017b; 2018a) and to Wills (Mizrahi 2018b), I have argued that Inference to the Best Explanation (IBE) is used in both scientific and non-scientific disciplines. As McCain and Poston (2017, 1) put it:

Explanatory reasoning is quite common. Not only are rigorous inferences to the best explanation (IBE) used pervasively in the sciences, explanatory reasoning is virtually ubiquitous in everyday life. It is not a stretch to say that we implement explanatory reasoning in a way that is “so routine and automatic that it easily goes unnoticed” [Douven 2017].

Once this point is acknowledged, it becomes clear that, when judged by the criteria of good explanations, such as unity, coherence, simplicity, and testability, scientific IBEs are generally better than non-scientific IBEs (Mizrahi 2017a, 360; Mizrahi 2017b, 19-20; Mizrahi 2018a, 17; Mizrahi 2018b, 46-47).

In response, Wills tells the story of his daughter who has attempted to reason abductively in class once. Wills (2018b, 38) begins by saying “Let me go back to my daughter,” even though it is the first time he mentions her in his (2018b), and then goes on to say that she once explained “how Scriabin created [the Prometheus] chord” to the satisfaction of her classmates.

But how is this supposed to be evidence against Weak Scientism? In my (2017a), I discuss how IBE is used in non-scientific disciplines and I even give an example from literature (Mizrahi 2017a, 361). Apparently, Wills is unaware of that, which I take to be another indication that he has not read the paper that defends the thesis he seeks to criticize. Again, to quote Wills (2018b, 38) himself, “All disciplines use abduction,” so to give an example of IBE from a non-scientific discipline does nothing at all to undermine Weak Scientism. According to Weak Scientism, all academic disciplines produce knowledge, and many of them do so by using IBE, it’s just that scientific IBEs are better than non-scientific IBEs.

Wills asserts without argument that, in non-scientific disciplines, there is no need to test explanations even when IBE is used to produce knowledge. As Wills (2018b, 38) writes, “All disciplines use abduction, true, but they do not all arrive at the ‘best explanation’ by the same procedures.” For Wills (2018b, 38), his daughter did not need to test her hypothesis about “how Scriabin created [the Prometheus] chord.” Wills does not tell us what the hypothesis in question actually is, so it is hard to tell whether it is testable or not. To claim that it doesn’t need to be tested, however, even when the argument for it is supposed to be an IBE, would be to misuse or abuse IBE rather than use it.

That is, if one were to reason to the best explanation without judging competing explanations by the criteria of unity, coherence, simplicity, testability, and the like, then one would not be warranted in concluding that one’s explanation is the best among those considered. That is just how IBE works (Psillos 2007). To say that an explanation is the best is to say that, among the competing explanations considered, it is the one that explains the most, leaves out the least, is consistent with background knowledge, is the least complicated, and yields independently testable predictions (Mizrahi 2017a, 360-362).

Wills (2018b, 39) seems to grant that “unity, simplicity and coherence” are good-making properties of explanations, but not testability. But why not testability? Why an explanation must be simple in order to be a good explanation, but not testable? Wills does not say. Again (Mizrahi 2018b, 47), I would urge Wills to consult logic and reasoning textbooks that discuss IBE. In those books, he will find that, in addition to unity, coherence, and simplicity, testability is one of the “characteristics that are necessary conditions for any explanation to qualify as being a reasonable empirical explanation” (Govier 2010, 300).

In other words, IBE is itself the procedure by which knowledge is produced. This procedure consists of “an inference from observations and a comparison between competing hypotheses to the conclusion that one of those hypotheses best explains the observations” (Mizrahi 2018c). For example (Sinnott-Armstrong and Fogelin 2015, 196):

  • Observation: Your lock is broken and your valuables are missing.
  • Explanation: The hypothesis that your house has been burglarized, combined with previously accepted facts and principles, provides a suitably strong explanation of observation 1.
  • Comparison: No other hypothesis provides an explanation nearly as good as that in 2.
  • Conclusion: Your house was burglarized.

As we can see, the procedure itself requires that we compare competing hypotheses. As I have mentioned already, “common standards for assessing explanations” (Sinnott-Armstrong and Fogelin 2015, 195) include unity, coherence, simplicity, and testability. This means that, if the hypothesis one favors as the best explanation for observation 1 cannot be tested, then one would not be justified in concluding that it is the best explanation, and hence probably true. That is simply how IBE works (Psillos 2007).

Contrary to what Wills (2018b, 39) seems to think, those who reason abductively without comparing competing explanations by the criteria of unity, coherence, simplicity, and testability are not using IBE, they are misusing or abusing it (Mizrahi 2017a, 360-361). To reason abductively without testing your competing explanations is as fallacious as reasoning inductively without making sure that your sample is representative of the target population (Govier 2010, 258-262).

Image by Specious Reasons via Flickr / Creative Commons

 

The Defense Rests

Fallacious reasoning, unfortunately, is what I have come to expect from Wills after reading and replying to his attacks on Weak Scientism. But this is forgivable, of course, given that we all fall prey to mistakes in reasoning on occasion. Even misspelling my last name several times (Wills 2018a, 18, 22, 24) is forgivable, so I accept Wills’ (2018b, 39) apology. What is unforgivable, however, is lazy scholarship and arguing in bad faith. As I have argued above, Wills is guilty of both because, despite claiming to be a practitioner of “close reading” (Wills 2018b, 34), Wills has not read the paper in which I defend the thesis he seeks to attack (Mizrahi 2017a), or any of the papers in my exchange with Brown (Mizrahi 2017b; 2018a), as evidenced by the fact that he does not cite them at all (not to mention citing and engaging with other works on scientism).

This explains why Wills completely misunderstands Weak Scientism and the arguments for the quantitative superiority (in terms of research output and research impact) as well as qualitative superiority (in terms of explanatory, predictive, and instrumental success) of scientific knowledge over non-scientific knowledge. For these reasons, this is my second and final response to Wills. I have neither the time nor the patience to engage with lazy scholarship that was produced in bad faith.

Contact details: mmizrahi@fit.edu

References

Ashton, Zoe and Moti Mizrahi. “Intuition Talk is Not Methodologically Cheap: Empirically Testing the ‘Received Wisdom’ About Armchair Philosophy.” Erkenntnis 83, no. 3 (2018a): 595-612.

Ashton, Zoe and Moti Mizrahi. “Show Me the Argument: Empirically Testing the Armchair Philosophy Picture.” Metaphilosophy 49, no. 1-2 (2018b): 58-70.

American Philosophical Association. “Minorities in Philosophy.” Data and Information on the Field of Philosophy. Accessed on August 13, 2018. http://c.ymcdn.com/sites/www.apaonline.org/resource/resmgr/data_on_profession/minorities_in_philosophy.pdf.

Barnes, Eric Christian. “Prediction versus Accommodation.” In The Stanford Encyclopedia of Philosophy (Fall 2018 Edition), edited by E. N. Zalta. Accessed on August 14, 2018. https://plato.stanford.edu/archives/fall2018/entries/prediction-accommodation/.

Botts, Tina Fernandes, Liam Kofi Bright, Myisha Cherry, Guntur Mallarangeng, and Quayshawn Spencer. “What Is the State of Blacks in Philosophy?” Critical Philosophy of Race 2, no. 2 (2014): 224-242.

Cherry, Myisha and Eric Schwitzgebel. “Like the Oscars, #PhilosophySoWhite.” Los Angeles Times, March 04, 2016. Accessed on August 13, 2018. http://www.latimes.com/opinion/op-ed/la-oe-0306-schwitzgebel-cherry-philosophy-so-white-20160306-story.html.

Douven, Igor. “Abduction.” In The Stanford Encyclopedia of Philosophy, edited by E. N. Zalta (Summer 2017 Edition). Accessed on August 14, 2018. https://plato.stanford.edu/archives/sum2017/entries/abduction/.

Dupré, John. “Against Scientific Imperialism.” PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994, no. 2 (1994): 374-381.

Ferrer, Amy. “What Can We Do about Diversity?” Leiter Reports: A Philosophy Blog, December 04, 2012. Accessed on August 13, 2018. http://leiterreports.typepad.com/blog/2012/12/what-can-we-do-about-diversity.html.

Govier, Trudy. A Practical Study of Argument. Seventh Edition. Belmont, CA: Wadsworth, 2010.

Graff, Gerald and Cathy Birkenstein. They Say/I Say: The Moves that Matter in Academic Writing. Fourth Edition. New York: W. W. Norton & Co., 2018.

Haack, Susan. Defending Science–within Reason: Between Scientism and Cynicism. New York: Prometheus Books, 2007.

Hawking, Stephen and Leonard Mlodinow. The Grand Design. New York: Bantam Books, 2010.

Kidd, I. J. “How Should Feyerabend Have Defended Astrology? A Reply to Pigliucci.” Social Epistemology Review and Reply Collective 5, no. 6 (2016): 11-17.

McCain, Kevin and Ted Poston. “Best Explanations: An Introduction.” In Best Explanations: New Essays on Inference to the Best Explanation, edited by K. McCain and T. Poston, 1-6. Oxford: Oxford University Press, 2017.

McGlone, Matthew S. “Contextomy: The Art of Quoting out of Context.” Media, Culture & Society 27, no. 4 (2005): 511-522.

Mizrahi, Moti. “Why the Ultimate Argument for Scientific Realism Ultimately Fails.” Studies in the History and Philosophy of Science 43, no. 1 (2012): 132-138.

Mizrahi, Moti. “Why Simpler Arguments are Better.” Argumentation 30, no. 3 (2016): 247-261.

Mizrahi, Moti. “What’s So Bad about Scientism?” Social Epistemology 31, no. 4 (2017a): 351-367.

Mizrahi, Moti. “In Defense of Weak Scientism: A Reply to Brown.” Social Epistemology Review and Reply Collective 6, no. 11 (2017b): 9-22.

Mizrahi, Moti. “More in Defense of Weak Scientism: Another Reply to Brown.” Social

Epistemology Review and Reply Collective 7, no. 4 (2018a): 7-25.

Mizrahi, Moti. “Weak Scientism Defended Once More.” Social Epistemology Review and Reply Collective 7, no. 6 (2018b): 41-50.

Mizrahi, Moti. “The ‘Positive Argument’ for Constructive Empiricism and Inference to the Best Explanation. Journal for General Philosophy of Science (2018c): https://doi.org/10.1007/s10838-018-9414-3.

Offit, Paul A. Autism’s False Prophets: Bad Science, Risky Medicine, and the Search for a Cure. New York: Columbia University Press, 2008.

Paxton, Molly, Carrie Figdor, and Valerie Tiberius. “Quantifying the Gender Gap: An Empirical Study of the Underrepresentation of Women in Philosophy.” Hypatia 27, no. 4 (2012): 949-957.

Peels, Rik. “The Empirical Case Against Introspection.” Philosophical Studies 17, no. 9 (2016): 2461-2485.

Peels, Rik. “A Conceptual Map of Scientism.” In Scientism: Prospects and Problems, edited by J. De Ridder, R. Peels, and R. Van Woudenberg, 28-56. New York: Oxford University Press, 2018.

Psillos, Stathis. “The Fine Structure of Inference to the Best Explanation. Philosophy and Phenomenological Research 74, no. 2 (2007): 441-448.

Rosenberg, Alexander. The Atheist’s Guide to Reality: Enjoying Life Without Illusions. New York: W. W. Norton, 2011.

Scimago Journal & Country Rank. “Subject Bubble Chart.” SJR: Scimago Journal & Country Rank. Accessed on August 13, 2018. http://www.scimagojr.com/mapgen.php?maptype=bc&country=US&y=citd.

Schwitzgebel, Eric, Linus Ta-Lun Huang, Andrew Higgins, Ivan Gonzalez-Cabrera. “The Insularity of Anglophone Philosophy: Quantitative Analyses.” Philosophical Papers 47, no. 1 (2018): 21-48.

Sinnott-Armstrong, Walter and Robert Fogelin. Understanding Arguments. Ninth Edition. Stamford, CT: Cengage Learning, 2015.

Stenmark, Mikael. “What is Scientism?” Religious Studies 33, no. 1 (1997): 15-32.

Van Norden, Bryan. “Western Philosophy is Racist.” Aeon, October 31, 2017a. Accessed on August 12, 2018. https://aeon.co/essays/why-the-western-philosophical-canon-is-xenophobic-and-racist.

Van Norden, Bryan. Taking Back Philosophy: A Multicultural Manifesto. New York: Columbia University Press, 2017b.

Van Vleet, Jacob E. Informal Logical Fallacies: A Brief Guide. Lahman, MD: University Press of America, 2011.

Walton, Douglas N. and Erik C. W. Krabbe. Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning. Albany: State University of New York Press, 1995.

Weinberg, Steven. Dreams of a Final Theory: The Scientist’s Search for the Ultimate Laws of Nature. New York: Random House, 1994.

Wills, Bernard. “Why Mizrahi Needs to Replace Weak Scientism With an Even Weaker Scientism.” Social Epistemology Review and Reply Collective 7, no. 5 (2018a): 18-24.

Wills, Bernard. “On the Limits of any Scientism.” Social Epistemology Review and Reply Collective 7, no. 7 (2018b): 34-39.

[1] I would like to thank Adam Riggio for inviting me to respond to Bernard Wills’ second attack on Weak Scientism.

Author Information: Raphael Sassower, University of Colorado, Colorado Springs, rsasswe@uccs.edu.

Sassower, Raphael. “Post-Truths and Inconvenient Facts.” Social Epistemology Review and Reply Collective 7, no. 8 (2018): 47-60.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-40g

Can one truly refuse to believe facts?
Image by Oxfam International via Flickr / Creative Commons

 

If nothing else, Steve Fuller has his ear to the pulse of popular culture and the academics who engage in its twists and turns. Starting with Brexit and continuing into the Trump-era abyss, “post-truth” was dubbed by the OED as its word of the year in 2016. Fuller has mustered his collected publications to recast the debate over post-truth and frame it within STS in general and his own contributions to social epistemology in particular.

This could have been a public mea culpa of sorts: we, the community of sociologists (and some straggling philosophers and anthropologists and perhaps some poststructuralists) may seem to someone who isn’t reading our critiques carefully to be partially responsible for legitimating the dismissal of empirical data, evidence-based statements, and the means by which scientific claims can be deemed not only credible but true. Instead, we are dazzled by a range of topics (historically anchored) that explain how we got to Brexit and Trump—yet Fuller’s analyses of them don’t ring alarm bells. There is almost a hidden glee that indeed the privileged scientific establishment, insular scientific discourse, and some of its experts who pontificate authoritative consensus claims are all bound to be undone by the rebellion of mavericks and iconoclasts that include intelligent design promoters and neoliberal freedom fighters.

In what follows, I do not intend to summarize the book, as it is short and entertaining enough for anyone to read on their own. Instead, I wish to outline three interrelated points that one might argue need not be argued but, apparently, do: 1) certain critiques of science have contributed to the Trumpist mindset; 2) the politics of Trumpism is too dangerous to be sanguine about; 3) the post-truth condition is troublesome and insidious. Though Fuller deals with some of these issues, I hope to add some constructive clarification to them.

Part One: Critiques of Science

As Theodor Adorno reminds us, critique is essential not only for philosophy, but also for democracy. He is aware that the “critic becomes a divisive influence, with a totalitarian phrase, a subversive” (1998/1963, 283) insofar as the status quo is being challenged and sacred political institutions might have to change. The price of critique, then, can be high, and therefore critique should be managed carefully and only cautiously deployed. Should we refrain from critique, then? Not at all, continues Adorno.

But if you think that a broad, useful distinction can be offered among different critiques, think again: “[In] the division between responsible critique, namely, that practiced by those who bear public responsibility, and irresponsible critique, namely, that practiced by those who cannot be held accountable for the consequences, critique is already neutralized.” (Ibid. 285) Adorno’s worry is not only that one forgets that “the truth content of critique alone should be that authority [that decides if it’s responsible],” but that when such a criterion is “unilaterally invoked,” critique itself can lose its power and be at the service “of those who oppose the critical spirit of a democratic society.” (Ibid)

In a political setting, the charge of irresponsible critique shuts the conversation down and ensures political hegemony without disruptions. Modifying Adorno’s distinction between (politically) responsible and irresponsible critiques, responsible scientific critiques are constructive insofar as they attempt to improve methods of inquiry, data collection and analysis, and contribute to the accumulated knowledge of a community; irresponsible scientific critiques are those whose goal is to undermine the very quest for objective knowledge and the means by which such knowledge can be ascertained. Questions about the legitimacy of scientific authority are related to but not of exclusive importance for these critiques.

Have those of us committed to the critique of science missed the mark of the distinction between responsible and irresponsible critiques? Have we become so subversive and perhaps self-righteous that science itself has been threatened? Though Fuller is primarily concerned with the hegemony of the sociology of science studies and the movement he has championed under the banner of “social epistemology” since the 1980s, he does acknowledge the Popperians and their critique of scientific progress and even admires the Popperian contribution to the scientific enterprise.

But he is reluctant to recognize the contributions of Marxists, poststructuralists, and postmodernists who have been critically engaging the power of science since the 19th century. Among them, we find Jean-François Lyotard who, in The Postmodern Condition (1984/1979), follows Marxists and neo-Marxists who have regularly lumped science and scientific discourse with capitalism and power. This critical trajectory has been well rehearsed, so suffice it here to say, SSK, SE, and the Edinburgh “Strong Programme” are part of a long and rich critical tradition (whose origins are Marxist). Adorno’s Frankfurt School is part of this tradition, and as we think about science, which had come to dominate Western culture by the 20th century (in the place of religion, whose power had by then waned as the arbiter of truth), it was its privileged power and interlocking financial benefits that drew the ire of critics.

Were these critics “responsible” in Adorno’s political sense? Can they be held accountable for offering (scientific and not political) critiques that improve the scientific process of adjudication between criteria of empirical validity and logical consistency? Not always. Did they realize that their success could throw the baby out with the bathwater? Not always. While Fuller grants Karl Popper the upper hand (as compared to Thomas Kuhn) when indirectly addressing such questions, we must keep an eye on Fuller’s “baby.” It’s easy to overlook the slippage from the political to the scientific and vice versa: Popper’s claim that we never know the Truth doesn’t mean that his (and our) quest for discovering the Truth as such is given up, it’s only made more difficult as whatever is scientifically apprehended as truth remains putative.

Limits to Skepticism

What is precious about the baby—science in general, and scientific discourse and its community in more particular ways—is that it offered safeguards against frivolous skepticism. Robert Merton (1973/1942) famously outlined the four features of the scientific ethos, principles that characterized the ideal workings of the scientific community: universalism, communism (communalism, as per the Cold War terror), disinterestedness, and organized skepticism. It is the last principle that is relevant here, since it unequivocally demands an institutionalized mindset of putative acceptance of any hypothesis or theory that is articulated by any community member.

One detects the slippery slope that would move one from being on guard when engaged with any proposal to being so skeptical as to never accept any proposal no matter how well documented or empirically supported. Al Gore, in his An Inconvenient Truth (2006), sounded the alarm about climate change. A dozen years later we are still plagued by climate-change deniers who refuse to look at the evidence, suggesting instead that the standards of science themselves—from the collection of data in the North Pole to computer simulations—have not been sufficiently fulfilled (“questions remain”) to accept human responsibility for the increase of the earth’s temperature. Incidentally, here is Fuller’s explanation of his own apparent doubt about climate change:

Consider someone like myself who was born in the midst of the Cold War. In my lifetime, scientific predictions surrounding global climate change has [sic.] veered from a deep frozen to an overheated version of the apocalypse, based on a combination of improved data, models and, not least, a geopolitical paradigm shift that has come to downplay the likelihood of a total nuclear war. Why, then, should I not expect a significant, if not comparable, alteration of collective scientific judgement in the rest of my lifetime? (86)

Expecting changes in the model does not entail a) that no improved model can be offered; b) that methodological changes in themselves are a bad thing (they might be, rather, improvements); or c) that one should not take action at all based on the current model because in the future the model might change.

The Royal Society of London (1660) set the benchmark of scientific credibility low when it accepted as scientific evidence any report by two independent witnesses. As the years went by, testability (“confirmation,” for the Vienna Circle, “falsification,” for Popper) and repeatability were added as requirements for a report to be considered scientific, and by now, various other conditions have been proposed. Skepticism, organized or personal, remains at the very heart of the scientific march towards certainty (or at least high probability), but when used perniciously, it has derailed reasonable attempts to use science as a means by which to protect, for example, public health.

Both Michael Bowker (2003) and Robert Proctor (1995) chronicle cases where asbestos and cigarette lobbyists and lawyers alike were able to sow enough doubt in the name of attenuated scientific data collection to ward off regulators, legislators, and the courts for decades. Instead of finding sufficient empirical evidence to attribute asbestos and nicotine to the failing health condition (and death) of workers and consumers, “organized skepticism” was weaponized to fight the sick and protect the interests of large corporations and their insurers.

Instead of buttressing scientific claims (that have passed the tests—in refereed professional conferences and publications, for example—of most institutional scientific skeptics), organized skepticism has been manipulated to ensure that no claim is ever scientific enough or has the legitimacy of the scientific community. In other words, what should have remained the reasonable cautionary tale of a disinterested and communal activity (that could then be deemed universally credible) has turned into a circus of fire-blowing clowns ready to burn down the tent. The public remains confused, not realizing that just because the stakes have risen over the decades does not mean there are no standards that ever can be met. Despite lobbyists’ and lawyers’ best efforts of derailment, courts have eventually found cigarette companies and asbestos manufacturers guilty of exposing workers and consumers to deathly hazards.

Limits to Belief

If we add to this logic of doubt, which has been responsible for discrediting science and the conditions for proposing credible claims, a bit of U.S. cultural history, we may enjoy a more comprehensive picture of the unintended consequences of certain critiques of science. Citing Kurt Andersen (2017), Robert Darnton suggests that the Enlightenment’s “rational individualism interacted with the older Puritan faith in the individual’s inner knowledge of the ways of Providence, and the result was a peculiarly American conviction about everyone’s unmediated access to reality, whether in the natural world or the spiritual world. If we believe it, it must be true.” (2018, 68)

This way of thinking—unmediated experiences and beliefs, unconfirmed observations, and disregard of others’ experiences and beliefs—continues what Richard Hofstadter (1962) dubbed “anti-intellectualism.” For Americans, this predates the republic and is characterized by a hostility towards the life of the mind (admittedly, at the time, religious texts), critical thinking (self-reflection and the rules of logic), and even literacy. The heart (our emotions) can more honestly lead us to the Promised Land, whether it is heaven on earth in the Americas or the Christian afterlife; any textual interference or reflective pondering is necessarily an impediment, one to be suspicious of and avoided.

This lethal combination of the life of the heart and righteous individualism brings about general ignorance and what psychologists call “confirmation bias” (the view that we endorse what we already believe to be true regardless of countervailing evidence). The critique of science, along this trajectory, can be but one of many so-called critiques of anything said or proven by anyone whose ideology we do not endorse. But is this even critique?

Adorno would find this a charade, a pretense that poses as a critique but in reality is a simple dismissal without intellectual engagement, a dogmatic refusal to listen and observe. He definitely would be horrified by Stephen Colbert’s oft-quoted quip on “truthiness” as “the conviction that what you feel to be true must be true.” Even those who resurrect Daniel Patrick Moynihan’s phrase, “You are entitled to your own opinion, but not to your own facts,” quietly admit that his admonishment is ignored by media more popular than informed.

On Responsible Critique

But surely there is merit to responsible critiques of science. Weren’t many of these critiques meant to dethrone the unparalleled authority claimed in the name of science, as Fuller admits all along? Wasn’t Lyotard (and Marx before him), for example, correct in pointing out the conflation of power and money in the scientific vortex that could legitimate whatever profit-maximizers desire? In other words, should scientific discourse be put on par with other discourses?  Whose credibility ought to be challenged, and whose truth claims deserve scrutiny? Can we privilege or distinguish science if it is true, as Monya Baker has reported, that “[m]ore than 70% of researchers have tried and failed to reproduce another scientist’s experiments, and more than half have failed to reproduce their own experiments” (2016, 1)?

Fuller remains silent about these important and responsible questions about the problematics (methodologically and financially) of reproducing scientific experiments. Baker’s report cites Nature‘s survey of 1,576 researchers and reveals “sometimes-contradictory attitudes towards reproducibility. Although 52% of those surveyed agree that there is a significant ‘crisis’ of reproducibility, less than 31% think that failure to reproduce published results means that the result is probably wrong, and most say that they still trust the published literature.” (Ibid.) So, if science relies on reproducibility as a cornerstone of its legitimacy (and superiority over other discourses), and if the results are so dismal, should it not be discredited?

One answer, given by Hans E. Plesser, suggests that there is a confusion between the notions of repeatability (“same team, same experimental setup”), replicability (“different team, same experimental setup”), and reproducibility (“different team, different experimental setup”). If understood in these terms, it stands to reason that one may not get the same results all the time and that this fact alone does not discredit the scientific enterprise as a whole. Nuanced distinctions take us down a scientific rabbit-hole most post-truth advocates refuse to follow. These nuances are lost on a public that demands to know the “bottom line” in brief sound bites: Is science scientific enough, or is it bunk? When can we trust it?

Trump excels at this kind of rhetorical device: repeat a falsehood often enough and people will believe it; and because individual critical faculties are not a prerequisite for citizenship, post-truth means no truth, or whatever the president says is true. Adorno’s distinction of the responsible from the irresponsible political critics comes into play here; but he innocently failed to anticipate the Trumpian move to conflate the political and scientific and pretend as if there is no distinction—methodologically and institutionally—between political and scientific discourses.

With this cultural backdrop, many critiques of science have undermined its authority and thereby lent credence to any dismissal of science (legitimately by insiders and perhaps illegitimately at times by outsiders). Sociologists and postmodernists alike forgot to put warning signs on their academic and intellectual texts: Beware of hasty generalizations! Watch out for wolves in sheep clothes! Don’t throw the baby out with the bathwater!

One would think such advisories unnecessary. Yet without such safeguards, internal disputes and critical investigations appear to have unintentionally discredited the entire scientific enterprise in the eyes of post-truth promoters, the Trumpists whose neoliberal spectacles filter in dollar signs and filter out pollution on the horizon. The discrediting of science has become a welcome distraction that opens the way to radical free-market mentality, spanning from the exploitation of free speech to resource extraction to the debasement of political institutions, from courts of law to unfettered globalization. In this sense, internal (responsible) critiques of the scientific community and its internal politics, for example, unfortunately license external (irresponsible) critiques of science, the kind that obscure the original intent of responsible critiques. Post-truth claims at the behest of corporate interests sanction a free for all where the concentrated power of the few silences the concerns of the many.

Indigenous-allied protestors block the entrance to an oil facility related to the Kinder-Morgan oil pipeline in Alberta.
Image by Peg Hunter via Flickr / Creative Commons

 

Part Two: The Politics of Post-Truth

Fuller begins his book about the post-truth condition that permeates the British and American landscapes with a look at our ancient Greek predecessors. According to him, “Philosophers claim to be seekers of the truth but the matter is not quite so straightforward. Another way to see philosophers is as the ultimate experts in a post-truth world” (19). This means that those historically entrusted to be the guardians of truth in fact “see ‘truth’ for what it is: the name of a brand ever in need of a product which everyone is compelled to buy. This helps to explain why philosophers are most confident appealing to ‘The Truth’ when they are trying to persuade non-philosophers, be they in courtrooms or classrooms.” (Ibid.)

Instead of being the seekers of the truth, thinkers who care not about what but how we think, philosophers are ridiculed by Fuller (himself a philosopher turned sociologist turned popularizer and public relations expert) as marketing hacks in a public relations company that promotes brands. Their serious dedication to finding the criteria by which truth is ascertained is used against them: “[I]t is not simply that philosophers disagree on which propositions are ‘true’ or ‘false’ but more importantly they disagree on what it means to say that something is ‘true’ or ‘false’.” (Ibid.)

Some would argue that the criteria by which propositions are judged to be true or false are worthy of debate, rather than the cavalier dismissal of Trumpists. With criteria in place (even if only by convention), at least we know what we are arguing about, as these criteria (even if contested) offer a starting point for critical scrutiny. And this, I maintain, is a task worth performing, especially in the age of pluralism when multiple perspectives constitute our public stage.

In addition to debasing philosophers, it seems that Fuller reserves a special place in purgatory for Socrates (and Plato) for labeling the rhetorical expertise of the sophists—“the local post-truth merchants in fourth century BC Athens”—negatively. (21) It becomes obvious that Fuller is “on their side” and that the presumed debate over truth and its practices is in fact nothing but “whether its access should be free or restricted.” (Ibid.) In this neoliberal reading, it is all about money: are sophists evil because they charge for their expertise? Is Socrates a martyr and saint because he refused payment for his teaching?

Fuller admits, “Indeed, I would have us see both Plato and the Sophists as post-truth merchants, concerned more with the mix of chance and skill in the construction of truth than with the truth as such.” (Ibid.) One wonders not only if Plato receives fair treatment (reminiscent of Popper’s denigration of Plato as supporting totalitarian regimes, while sparing Socrates as a promoter of democracy), but whether calling all parties to a dispute “post-truth merchants” obliterates relevant differences. In other words, have we indeed lost the desire to find the truth, even if it can never be the whole truth and nothing but the truth?

Political Indifference to Truth

One wonders how far this goes: political discourse without any claim to truth conditions would become nothing but a marketing campaign where money and power dictate the acceptance of the message. Perhaps the intended message here is that contemporary cynicism towards political discourse has its roots in ancient Greece. Regardless, one should worry that such cynicism indirectly sanctions fascism.

Can the poor and marginalized in our society afford this kind of cynicism? For them, unlike their privileged counterparts in the political arena, claims about discrimination and exploitation, about unfair treatment and barriers to voting are true and evidence based; they are not rhetorical flourishes by clever interlocutors.

Yet Fuller would have none of this. For him, political disputes are games:

[B]oth the Sophists and Plato saw politics as a game, which is to say, a field of play involving some measure of both chance and skill. However, the Sophists saw politics primarily as a game of chance whereas Plato saw it as a game of skill. Thus, the sophistically trained client deploys skill in [the] aid of maximizing chance occurrences, which may then be converted into opportunities, while the philosopher-king uses much the same skills to minimize or counteract the workings of chance. (23)

Fuller could be channeling here twentieth-century game theory and its application in the political arena, or the notion offered by Lyotard when describing the minimal contribution we can make to scientific knowledge (where we cannot change the rules of the game but perhaps find a novel “move” to make). Indeed, if politics is deemed a game of chance, then anything goes, and it really should not matter if an incompetent candidate like Trump ends up winning the American presidency.

But is it really a question of skill and chance? Or, as some political philosophers would argue, is it not a question of the best means by which to bring to fruition the best results for the general wellbeing of a community? The point of suggesting the figure of a philosopher-king, to be sure, was not his rhetorical skills in this conjunction, but instead the deep commitment to rule justly, to think critically about policies, and to treat constituents with respect and fairness. Plato’s Republic, however criticized, was supposed to be about justice, not about expediency; it is an exploration of the rule of law and wisdom, not a manual about manipulation. If the recent presidential election in the US taught us anything, it’s that we should be wary of political gamesmanship and focus on experience and knowledge, vision and wisdom.

Out-Gaming Expertise Itself

Fuller would have none of this, either. It seems that there is virtue in being a “post-truther,” someone who can easily switch between knowledge games, unlike the “truther” whose aim is to “strengthen the distinction by making it harder to switch between knowledge games.” (34) In the post-truth realm, then, knowledge claims are lumped into games that can be played at will, that can be substituted when convenient, without a hint of the danger such capricious game-switching might engender.

It’s one thing to challenge a scientific hypothesis about astronomy because the evidence is still unclear (as Stephen Hawking has done in regard to Black Holes) and quite another to compare it to astrology (and give equal hearings to horoscope and Tarot card readers as to physicists). Though we are far from the Demarcation Problem (between science and pseudo-science) of the last century, this does not mean that there is no difference at all between different discourses and their empirical bases (or that the problem itself isn’t worthy of reconsideration in the age of Fuller and Trump).

On the contrary, it’s because we assume difference between discourses (gray as they may be) that we can move on to figure out on what basis our claims can and should rest. The danger, as we see in the political logic of the Trump administration, is that friends become foes (European Union) and foes are admired (North Korea and Russia). Game-switching in this context can lead to a nuclear war.

In Fuller’s hands, though, something else is at work. Speaking of contemporary political circumstances in the UK and the US, he says: “After all, the people who tend to be demonized as ‘post-truth’ – from Brexiteers to Trumpists – have largely managed to outflank the experts at their own game, even if they have yet to succeed in dominating the entire field of play.” (39) Fuller’s celebratory tone here may either bring a slight warning in the use of “yet” before the success “in dominating the entire field of play” or a prediction that indeed this is what is about to happen soon enough.

The neoliberal bottom-line surfaces in this assessment: he who wins must be right, the rich must be smart, and more perniciously, the appeal to truth is beside the point. More specifically, Fuller continues:

My own way of dividing the ‘truthers’ and the ‘post-truthers’ is in terms of whether one plays by the rules of the current knowledge game or one tries to change the rules of the game to one’s advantage. Unlike the truthers, who play by the current rules, the post-truthers want to change the rules. They believe that what passes for truth is relative to the knowledge game one is playing, which means that depending on the game being played, certain parties are advantaged over others. Post-truth in this sense is a recognisably social constructivist position, and many of the arguments deployed to advance ‘alternative facts’ and ‘alternative science’ nowadays betray those origins. They are talking about worlds that could have been and still could be—the stuff of modal power. (Ibid.)

By now one should be terrified. This is a strong endorsement of lying as a matter of course, as a way to distract from the details (and empirical bases) of one “knowledge game”—because it may not be to one’s ideological liking–in favor of another that might be deemed more suitable (for financial or other purposes).

The political stakes here are too high to ignore, especially because there are good reasons why “certain parties are advantaged over others” (say, climate scientists “relative to” climate deniers who have no scientific background or expertise). One wonders what it means to talk about “alternative facts” and “alternative science” in this context: is it a means of obfuscation? Is it yet another license granted by the “social constructivist position” not to acknowledge the legal liability of cigarette companies for the addictive power of nicotine? Or the pollution of water sources in Flint, Michigan?

What Is the Mark of an Open Society?

If we corral the broader political logic at hand to the governance of the scientific community, as Fuller wishes us to do, then we hear the following:

In the past, under the inspiration of Karl Popper, I have argued that fundamental to the governance of science as an ‘open society’ is the right to be wrong (Fuller 2000a: chap. 1). This is an extension of the classical republican ideal that one is truly free to speak their mind only if they can speak with impunity. In the Athenian and the Roman republics, this was made possible by the speakers–that is, the citizens–possessing independent means which allowed them to continue with their private lives even if they are voted down in a public meeting. The underlying intuition of this social arrangement, which is the epistemological basis of Mill’s On Liberty, is that people who are free to speak their minds as individuals are most likely to reach the truth collectively. The entangled histories of politics, economics and knowledge reveal the difficulties in trying to implement this ideal. Nevertheless, in a post-truth world, this general line of thought is not merely endorsed but intensified. (109)

To be clear, Fuller not only asks for the “right to be wrong,” but also for the legitimacy of the claim that “people who are free to speak their minds as individuals are most likely to reach the truth collectively.” The first plea is reasonable enough, as humans are fallible (yes, Popper here), and the history of ideas has proven that killing heretics is counterproductive (and immoral). If the Brexit/Trump post-truth age would only usher a greater encouragement for speculation or conjectures (Popper again), then Fuller’s book would be well-placed in the pantheon of intellectual pluralism; but if this endorsement obliterates the silly from the informed conjecture, then we are in trouble and the ensuing cacophony will turn us all deaf.

The second claim is at best supported by the likes of James Surowiecki (2004) who has argued that no matter how uninformed a crowd of people is, collectively it can guess the correct weight of a cow on stage (his TED talk). As folk wisdom, this is charming; as public policy, this is dangerous. Would you like a random group of people deciding how to store nuclear waste, and where? Would you subject yourself to the judgment of just any collection of people to decide on taking out your appendix or performing triple-bypass surgery?

When we turn to Trump, his supporters certainly like that he speaks his mind, just as Fuller says individuals should be granted the right to speak their minds (even if in error). But speaking one’s mind can also be a proxy for saying whatever, without filters, without critical thinking, or without thinking at all (let alone consulting experts whose very existence seems to upset Fuller). Since when did “speaking your mind” turn into scientific discourse? It’s one thing to encourage dissent and offer reasoned doubt and explore second opinions (as health care professionals and insurers expect), but it’s quite another to share your feelings and demand that they count as scientific authority.

Finally, even if we endorse the view that we “collectively” reach the truth, should we not ask: by what criteria? according to what procedure? under what guidelines? Herd mentality, as Nietzsche already warned us, is problematic at best and immoral at worst. Trump rallies harken back to the fascist ones we recall from Europe prior to and during WWII. Few today would entrust the collective judgment of those enthusiasts of the Thirties to carry the day.

Unlike Fuller’s sanguine posture, I shudder at the possibility that “in a post-truth world, this general line of thought is not merely endorsed but intensified.” This is neither because I worship experts and scorn folk knowledge nor because I have low regard for individuals and their (potentially informative) opinions. Just as we warn our students that simply having an opinion is not enough, that they need to substantiate it, offer data or logical evidence for it, and even know its origins and who promoted it before they made it their own, so I worry about uninformed (even if well-meaning) individuals (and presidents) whose gut will dictate public policy.

This way of unreasonably empowering individuals is dangerous for their own well-being (no paternalism here, just common sense) as well as for the community at large (too many untrained cooks will definitely spoil the broth). For those who doubt my concern, Trump offers ample evidence: trade wars with allies and foes that cost domestic jobs (when promising to bring jobs home), nuclear-war threats that resemble a game of chicken (as if no president before him ever faced such an option), and completely putting into disarray public policy procedures from immigration regulations to the relaxation of emission controls (that ignores the history of these policies and their failures).

Drought and suffering in Arbajahan, Kenya in 2006.
Photo by Brendan Cox and Oxfam International via Flickr / Creative Commons

 

Part Three: Post-Truth Revisited

There is something appealing, even seductive, in the provocation to doubt the truth as rendered by the (scientific) establishment, even as we worry about sowing the seeds of falsehood in the political domain. The history of science is the story of authoritative theories debunked, cherished ideas proven wrong, and claims of certainty falsified. Why not, then, jump on the “post-truth” wagon? Would we not unleash the collective imagination to improve our knowledge and the future of humanity?

One of the lessons of postmodernism (at least as told by Lyotard) is that “post-“ does not mean “after,” but rather, “concurrently,” as another way of thinking all along: just because something is labeled “post-“, as in the case of postsecularism, it doesn’t mean that one way of thinking or practicing has replaced another; it has only displaced it, and both alternatives are still there in broad daylight. Under the rubric of postsecularism, for example, we find religious practices thriving (80% of Americans believe in God, according to a 2018 Pew Research survey), while the number of unaffiliated, atheists, and agnostics is on the rise. Religionists and secularists live side by side, as they always have, more or less agonistically.

In the case of “post-truth,” it seems that one must choose between one orientation or another, or at least for Fuller, who claims to prefer the “post-truth world” to the allegedly hierarchical and submissive world of “truth,” where the dominant establishment shoves its truths down the throats of ignorant and repressed individuals. If post-truth meant, like postsecularism, the realization that truth and provisional or putative truth coexist and are continuously being re-examined, then no conflict would be at play. If Trump’s claims were juxtaposed to those of experts in their respective domains, we would have a lively, and hopefully intelligent, debate. False claims would be debunked, reasonable doubts could be raised, and legitimate concerns might be addressed. But Trump doesn’t consult anyone except his (post-truth) gut, and that is troublesome.

A Problematic Science and Technology Studies

Fuller admits that “STS can be fairly credited with having both routinized in its own research practice and set loose on the general public–if not outright invented—at least four common post-truth tropes”:

  1. Science is what results once a scientific paper is published, not what made it possible for the paper to be published, since the actual conduct of research is always open to multiple countervailing interpretations.
  2. What passes for the ‘truth’ in science is an institutionalised contingency, which if scientists are doing their job will be eventually overturned and replaced, not least because that may be the only way they can get ahead in their fields.
  3. Consensus is not a natural state in science but one that requires manufacture and maintenance, the work of which is easily underestimated because most of it occurs offstage in the peer review process.
  4. Key normative categories of science such as ‘competence’ and ‘expertise’ are moveable feasts, the terms of which are determined by the power dynamics that obtain between specific alignments of interested parties. (43)

In that sense, then, Fuller agrees that the positive lessons STS wished for the practice of the scientific community may have inadvertently found their way into a post-truth world that may abuse or exploit them in unintended ways. That is, something like “consensus” is challenged by STS because of how the scientific community pretends to get there knowing as it does that no such thing can ever be reached and when reached it may have been reached for the wrong reasons (leadership pressure, pharmaceutical funding of conferences and journals). But this can also go too far.

Just because consensus is difficult to reach (it doesn’t mean unanimity) and is susceptible to corruption or bias doesn’t mean that anything goes. Some experimental results are more acceptable than others and some data are more informative than others, and the struggle for agreement may take its political toll on the scientific community, but this need not result in silly ideas about cigarettes being good for our health or that obesity should be encouraged from early childhood.

It seems important to focus on Fuller’s conclusion because it encapsulates my concern with his version of post-truth, a condition he endorses not only in the epistemological plight of humanity but as an elixir with which to cure humanity’s ills:

While some have decried recent post-truth campaigns that resulted in victory for Brexit and Trump as ‘anti-intellectual’ populism, they are better seen as the growth pains of a maturing democratic intelligence, to which the experts will need to adjust over time. Emphasis in this book has been given to the prospect that the lines of intellectual descent that have characterised disciplinary knowledge formation in the academy might come to be seen as the last stand of a political economy based on rent-seeking. (130)

Here, we are not only afforded a moralizing sermon about (and it must be said, from) the academic privileged position, from whose heights all other positions are dismissed as anti-intellectual populism, but we are also entreated to consider the rantings of the know-nothings of the post-truth world as the “growing pains of a maturing democratic intelligence.” Only an apologist would characterize the Trump administration as mature, democratic, or intelligent. Where’s the evidence? What would possibly warrant such generosity?

It’s one thing to challenge “disciplinary knowledge formation” within the academy, and there are no doubt cases deserving reconsideration as to the conditions under which experts should be paid and by whom (“rent-seeking”); but how can these questions about higher education and the troubled relations between the university system and the state (and with the military-industrial complex) give cover to the Trump administration? Here is Fuller’s justification:

One need not pronounce on the specific fates of, say, Brexit or Trump to see that the post-truth condition is here to stay. The post-truth disrespect for established authority is ultimately offset by its conceptual openness to previously ignored people and their ideas. They are encouraged to come to the fore and prove themselves on this expanded field of play. (Ibid)

This, too, is a logical stretch: is disrespect for the authority of the establishment the same as, or does it logically lead to, the “conceptual” openness to previously “ignored people and their ideas”? This is not a claim on behalf of the disenfranchised. Perhaps their ideas were simply bad or outright racist or misogynist (as we see with Trump). Perhaps they were ignored because there was hope that they would change for the better, become more enlightened, not act on their white supremacist prejudices. Should we have “encouraged” explicit anti-Semitism while we were at it?

Limits to Tolerance

We tolerate ignorance because we believe in education and hope to overcome some of it; we tolerate falsehood in the name of eventual correction. But we should never tolerate offensive ideas and beliefs that are harmful to others. Once again, it is one thing to argue about black holes, and quite another to argue about whether black lives matter. It seems reasonable, as Fuller concludes, to say that “In a post-truth utopia, both truth and error are democratised.” It is also reasonable to say that “You will neither be allowed to rest on your laurels nor rest in peace. You will always be forced to have another chance.”

But the conclusion that “Perhaps this is why some people still prefer to play the game of truth, no matter who sets the rules” (130) does not follow. Those who “play the game of truth” are always vigilant about falsehoods and post-truth claims, and to say that they are simply dupes of those in power is both incorrect and dismissive. On the contrary: Socrates was searching for the truth and fought with the sophists, as Popper fought with the logical positivists and the Kuhnians, and as scientists today are searching for the truth and continue to fight superstitions and debunked pseudoscience about vaccination causing autism in young kids.

If post-truth is like postsecularism, scientific and political discourses can inform each other. When power-plays by ignoramus leaders like Trump are obvious, they could shed light on less obvious cases of big pharma leaders or those in charge of the EPA today. In these contexts, inconvenient facts and truths should prevail and the gamesmanship of post-truthers should be exposed for what motivates it.

Contact details: rsassowe@uccs.edu

* Special thanks to Dr. Denise Davis of Brown University, whose contribution to my critical thinking about this topic has been profound.

References

Theodor W. Adorno (1998/1963), Critical Models: Interventions and Catchwords. Translated by Henry W. Pickford. New York: Columbia University Press

Kurt Andersen (2017), Fantasyland: How America Went Hotwire: A 500-Year History. New York: Random House

Monya Baker, “1,500 scientists lift the lid on reproducibility,” Nature Vol. 533, Issue 7604, 5/26/16 (corrected 7/28/16)

Michael Bowker (2003), Fatal Deception: The Untold Story of Asbestos. New York: Rodale.

Robert Darnton, “The Greatest Show on Earth,” New York Review of Books Vo. LXV, No. 11 6/28/18, pp. 68-72.

Al Gore (2006), An Inconvenient Truth: The Planetary Emergency of Global Warming and What Can Be Done About It. New York: Rodale.

Richard Hofstadter (1962), Anti-Intellectualism in American Life. New York: Vintage Books.

Jean- François Lyotard (1984), The Postmodern Condition: A Report on Knowledge. Translated by Geoff Bennington and Brian Massumi. Minneapolis: University of Minnesota Press.

Robert K. Merton (1973/1942), “The Normative Structure of Science,” The Sociology of Science: Theoretical and Empirical Investigations. Chicago and London: The University of Chicago Press, pp. 267-278.

Hans E. Plesser, “Reproducibility vs. Replicability: A Brief History of Confused Terminology,” Frontiers in Neuroinformatics, 2017; 11: 76; online: 1/18/18.

Robert N. Proctor (1995), Cancer Wars: How Politics Shapes What We Know and Don’t Know About Cancer. New York: Basic Books.

James Surowiecki (2004), The Wisdom of Crowds. New York: Anchor Books.

Author Information: Pablo Schyfter, University of Edinburgh, p.schyfter@ed.ac.uk

Schyfter, Pablo. “Inaccurate Ambitions and Missing Methodologies: Thoughts on Jeff Kochan and the Sociology of Scientific Knowledge.” Social Epistemology Review and Reply Collective 7, no. 8 (2018): 8-14.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3ZI

Understanding the practice of science is a complex and contentious field of study. Scientific practitioners, as above, are sometimes also difficult to understand.
Photo by Christian Reed via Flickr / Creative Commons

 

Jeff Kochan’s Science as Social Existence (2017) presents an engaging study of two perspectives on science and scientific knowledge: Heidegger’s existential phenomenology and the sociology of scientific knowledge (SSK). The book sets down an interesting path to merge the two traditions. Kochan tries to navigate the path’s turns and terrains in original and fruitful ways.

Here, I offer reflections from the perspective of SSK and more specifically, the Edinburgh School’s Strong Programme in the sociology of scientific knowledge. I contend that Kochan’s work does not represent or engage with SSK satisfactorily, and is hindered in its accomplishments as a result. I begin by considering Kochan’s most important claims and ambitions, before turning to my analysis.

The Nature of the Argument

First, Jeff Kochan claims that Heidegger’s existential phenomenology and SSK can fix each other’s flaws and can together constitute a superior framework for analysing science and its epistemic work and products. Kochan elaborates this first claim by using the next two.

Second, he argues that Heidegger’s work can resolve what he considers to be SSK’s long-running and unresolved problem concerning the relationship between knowledge-makers and the world about which they make knowledge. Kochan claims that the Strong Programme employs a form of realism that draws a divide between the knower and the world. He refers to this realism as a ‘glass-bulb model.’ Kochan goes on to state that ‘alternatives to [the glass-bulb model] have already begun to earn a respected place within the broader field of science studies,’ (2017, 33) though he offers no examples to support the claim. He contends that Heidegger’s assistance is imperative since ‘science studies scholars can no longer take external-world realism for granted’ (ibid.).

Third, Kochan suggests that SSK can resolve Heidegger’s comparatively limited understanding of ‘the social.’ That is, the former can lend its social scientific perspectives and methods to bolster Heidegger’s insufficient explanation of human collectives and their behaviour.  Not only does SSK offer a more detailed understanding, it also contributes tools with which to carry out research.

Finally, in his reply to Raphael Sassower’s review, Kochan dismisses the former’s criticisms about the book’s failure to address social phenomena such as capitalism, neoliberalism, and industrial-academic-military complexes (Sassower 2018) by saying, ‘these are not what my book is about’ (Kochan 2018, 3). Kochan contends that he cannot be faulted for not accomplishing goals that he never set out to accomplish. This response serves as the starting point for my own analysis.

I agree with the basics of Kochan’s reply. Sassower’s criticisms overlook or disregard the author’s intents, and like all authors Kochan is entitled to set his own goals. However, the sympathy that Kochan expects from Sassower is not one that he offers David Bloor, Barry Barnes or the others in SSK whom he criticises.

His principal criticism—the second claim above—relies on a misrepresentation of the Strong Programme’s ambitions and concerns. That is, Kochan does not describe what their work is about accurately. Moreover, what Kochan looks to draw from SSK more broadly—the third claim above—features little in the book. That is, Kochan’s book is not really about one of things that it is supposed to be about.

Here, I will first explain Kochan’s misrepresentation of Strong Programme goals and the resultant errors in his criticism. Next, I will examine Kochan’s lack of concern for crucial aspects of SSK, which reflects both his misrepresentation of the tradition and his choice not to engage with it meaningfully.

Aims and Essentials in SSK

Kochan’s unfair criticisms of the Strong Programme (and SSK more broadly) first involve the tradition’s treatment of ontological issues. Kochan argues that the Strong Programme does not offer a satisfactory analysis of the world’s existence. When he introduces SSK in the book’s first chapter, he does so by focusing on ‘the problem of how one can know that the external world exists’ (2017, 37). And yet, this was never a defining concern for those who developed SSK. Their work was not about ontology. For most of them, it still is not.

Kochan claims that the Strong Programme failed by not delivering a convincing argument for ‘the claim that the subject can, in fact, know that this world, as well as the things within it, actually exists’ (2017, 49). Bloor and Barnes’ realist position accepts a basic presupposition, held implicitly by people as they live their lives, that the world with which they interact exists.  Kochan chastises this form of realism because it does not ‘establish the existence of the external world’ (2017, 49).

But again, this was never the tradition’s intent nor is it a requisite for their actual intents. The Strong Programme did not entirely ignore ontology. Knowledge and Social Imagery, in which Bloor presents the fundamental aims and methods of the Strong Programme, mentions and engages with some ontological topics (1976). Nonetheless, they form a very limited part of the book and the tradition, and so should not take precedence when evaluating SSK. Kochan’s criticism employs a form of misrepresentation similar to the one he dislikes when Sassower applies it to Science as Social Existence.

Moreover, Kochan faults the Strong Programme for doing what it hoped to do. He argues that the main hurdle to correcting Bloor and Barnes’s flawed realism is the scholars’ ‘preoccupation with epistemological, at the expense of ontological, issues’ (2017, 50). Knowledge and Social Imagery begins with an explicit declaration of ambitions, all of which concern epistemology and social studies of knowledge. Kochan either dismisses or ignores those aims in order to convey the importance and strength of his arguments. He does the same for other SSK fundamentals.

On several occasions, Kochan chooses to cast aside concerns or commitments that are vital to the Strong Programme. For instance, when he employs Heidegger’s phenomenology to challenge the Strong Programme’s criticism of external-world sceptics, Kochan writes:

from the standpoint of Heidegger’s own response to the external-world sceptic, the distinction SSK practitioners draw between absolute and relative knowledge is somewhat beside the point. (2017, 48)

And yet, few things are as explicitly vital to the Strong Programme as a clear rejection of absolutism and a wholehearted commitment to relativism. In Knowledge and Social Imagery, Bloor writes that ‘[there] is no denying that the strong programme in the sociology of knowledge rests on a form of relativism.’ (1976, 158) Elsewhere, he summarises the basic relation between absolutism and relativism as follows:

If you are a relativist you cannot be an absolutist, and if you are not a relativist you must be an absolutist. Relativism and absolutism are mutually exclusive positions. (2007, 252)

Bloor’s writings on the study of knowledge, like his analyses of rules and rule-following (1997), invariably draw distinctions between absolutism and relativism and unequivocally commit to the latter. As such, when Kochan treats the distinction as ‘somewhat beside the point,’ he is marginalising an indispensable component of what he sets out to criticise.

Finally, Kochan at times disregards the importance of social collectives to the Strong Programme and SSK more broadly. For instance, when analysing Bloor’s perspective on referencing as an intentional state requiring specific forms of content, Kochan writes:

For the purposes of the present analysis, whether that content is best explained in collectivist or individualist terms is beside the point. (2017, 79)

Crucial to social science is the relationship (and often the distinction) between collective and individual phenomena. The Strong Programme embraces and employs collectivism, and in part distinguishes itself through its understanding of knowledge as a social institution. Thus the distinction between individualism and collectivism is not ‘beside the point,’ and understanding SSK demands a dedicated concern for the social. Unfortunately, Kochan does not recognise its importance.

The Social and Practice

As part of his attempt to draw Heidegger and SSK into partnership, Kochan argues that the former can benefit from SSK’s comprehension of the social and its tools for exploring its phenomena. However, Kochan dedicates a surprisingly small part of his book to discussing social scientific topics. Most notably, his explanation of the social character of scientific work and scientific knowledge is very limited and lacks the detail and nuance that he offers when discussing Heidegger and ontology.

Kochan repeatedly explains the social by referring to ‘tradition.’ He writes that Heidegger and SSK both ‘regard science as a finite, social and historical practice’ (2017, 208) but relies on opaque notions of history and tradition to support the claim. He refers to the ‘history of thinking’ (2017, 6) that determines how a community behaves and knows, and contends that an individual’s understanding of things ‘can be explained by reference to the tradition which structures the way she thinks about those things’ (2017, 221).

The inherited a priori framework that structures thinking gains its authority from the ‘tradition which both enables and is sustained by [the everyday work-world]’ (2017, 224). Finally, Kochan argues that Bloor and Heidegger study normativity—a topic crucial to SSK—by ‘tracing its origin back to tradition’ (2017, 217).

Kochan rests his explanation of the social on ‘history’ and ‘tradition,’ but never offers an explicit, clear definition of either one. Although on occasion he employs terms like ‘socio-cultural,’ Kochan does not dedicate attention to SSK’s concern for social collectives. He mentions the importance of socialisation, but does not support the claim with evidence or analysis. As such, Kochan does not explore or employ the field’s social scientific concepts or methods, both of which he describes as the tradition’s contribution to his hybrid theory.

Kochan’s lack of concern for the social also involves a general disregard for scientific practice. Early in the book, Kochan states that he will demonstrate how SSK and Heidegger offer ‘mutually reinforcing models of the way scientists get things done’ (2017, 8). However, he does not address the lived undertakings involved in scientific work.

The way scientists get things done’ concerns more than their place within an abstract notion of tradition. It also involves what practitioners do, including the most mundane of behaviours. Kochan criticises science studies for arguing that ‘theory can be unproblematically reduced to practice. (2017, 57).

He offers no evidence that science studies believes this, though if it did, Kochan would be correct. Understanding science and its knowledge cannot be reduced entirely to making sense of its practices; science is more than what specific groups of people do. However, understanding science also cannot circumvent what happens in places like laboratories, fields and conferences rooms.

One example of Kochan’s omission of practice is his discussion of Joseph Rouse’s criticisms of Heidegger’s ‘theory-dominant account of the scientific enterprise’ (2017, 86). Heidegger’s analysis of science rests on the notion that specific forms of ‘projection’ underlie our epistemic engagement with entities and events. Science’s start involved a ‘change-over’ to a mathematical form of projection called mathesis and a ‘shift in experience within the range of possible understandings of nature opened up by the mathematical projection’ (2017, 90).

Rouse criticises Heidegger for never offering a satisfactory explanation of how ‘change-overs’ from one projection to another occur. Kochan challenges Rouse much as he criticises science studies: by saying that the latter wants to reduce everything to practice at the total expense of theory. I believe that Kochan fails to engage with the real issue. If Rouse supports a practice-only explanation of science—which Kochan does not demonstrate convincingly—then the former’s position is flawed.

However, Rouse’s failure would not resolve Heidegger’s problem. The latter would still not offer a clear explanation of what occurs in the lived world of scientific work. He would still fail to explain how change-overs happen. It is hardly radical to suggest that science is something that was developed by communities of people doing certain things. If its birth involved a novel form of projection, then it is also hardly radical to wonder how that projection came to be.

Moreover, Heidegger’s mathesis veers Kochan away from the particularities and nuances of scientific work. He writes:

Heidegger’s account of modern science as mathesis began with Heidegger’s insistence that facts, measurement, and experiment, broadly construed, figure as continuous threads running from modern science all the way back through medieval to ancient science. (2017, 281)

Such a claim relies on an excessively broad conceptualisation of facts, measurements, experiments and other lived components of science. It does not reflect the workings of scientific practice, which SSK seeks to investigate. In a sense, commitment to the claim involves a belittling of empirical study. It also involves marginalising one of SSK’s most important contributions to the study of science: its methodologies.

Missing Methodologies

Kochan does not present any analysis of SSK methodologies, nor does he offer his own. To some, methodologies might appear to be secondary components of theoretical traditions. To those in SSK and especially those who developed the Strong Programme, methodologies are all-important.

In the first and second pages of Knowledge and Social Imagery, Bloor introduces his aims in the book and his ambitions for the programme he is about to present. He states that the purpose of his book is to challenge social scientific and philosophical arguments that fail to place science and its knowledge ‘within the scope of a thorough-going sociological scrutiny’ (1976, 4). Bloor then explains that as a result, ‘the discussions which follow will sometimes, though not always, have to be methodological rather than substantive’ (1976, 4).

Put simply, Bloor sets out to demonstrate that science can be studied sociologically and to establish the methods with which to carry out those studies. He introduces four tenets—of causality, impartiality, symmetry and reflexivity—and states that they will ‘define what will be called the strong programme in the sociology of knowledge’ (1976, 7) As such, I believe that Kochan’s lack of concern for methodology is another example of overlooking what SSK seeks to do. Moreover, it is an example of Kochan not incorporating SSK meaningfully into his hybrid theory.

In his introduction, Kochan summarises each chapter’s aim and content. He describes Chapter 6 as an exploration of a historical episode involving Robert Boyle and Francis Line, as well as an evaluation of Bloor’s concept of ‘social imagery’ and Heidegger’s notions of ‘world picture’ and ‘basic blueprint.’ Kochan writes:

Bloor’s work suggests ways in which Heidegger’s concepts of ‘world picture’ and ‘basic blueprint’ might be rephrased and further developed in a more sociological idiom…” (2017, 15)

Here, Kochan seems to describe the potential of Bloor’s scholarship as principally a semantic reformulation of Heidegger’s ideas, or at most a set of concepts that can make Heidegger’s work more accessible to practitioners in SSK and other social studies of science. I believe this is one symptom of a broader and very important trouble. Kochan does not consider the possibility that the Strong Programme and SSK involve more than concepts.

He does not acknowledge vital parts of the traditions with great potentialfor his mission. He chooses to mention empirical SSK studies and their research practices only in passing. For instance, Kochan does not engage seriously with the Bath School and its Empirical Programme of Relativism (EPOR), although its contributions to SSK were no less important than those of the Edinburgh School. (Collins 1981, 1983) EPOR’s many case studies helped put the latter’s methodological tenets into action and thus give greater substance to what Bloor defines as the core of the Strong Programme.

One can also consider the importance of methodology by returning to the issue of the external world. I have argued that the Strong Programme did not embark on an ontological mission. Kochan’s criticism of what he terms a ‘glass-bulb model’ relies on an inaccurate representation of what the tradition set out to do. I also believe that his criticism overlooks or belittles the methodological function of Bloor and Barnes’ realism. Kochan writes:

Barnes does not actually argue for the existence of the external world, but only for the utility of the assertion that such a world exists. (2017, 29)

‘Only for the utility’ implies that methodological uses and effectiveness are inferior parameters with which to judge the quality and appropriateness of ontological commitments. I believe that Barnes’s choice is at least in part methodological. It serves a form of research not concerned with ontological questions and instead intent on studying the lived workings of science and its knowledge-making. If Kochan is allowed to set his own research and writing goals, so are the Edinburghers. Moreover, this is a case of Kochan not embracing all-important lessons from SSK. The tradition offers limited insights into the social if its methodology is not lent fuller attention.

From Glass Bulbs to Light Bulbs

I began by listing three claims which I believe capture Kochan’s key aims in Science as Social Existence. I then introduced one of his most important responses to Raphael Sassower’s review. Two questions bind the four claims together. First, what is a person’s work about? Second, does the work accomplish what it means to do? These help to evaluate Kochan’s treatment of work with which he engages, and to evaluate his success in doing so. In both cases, I believe that Science as Social Existence displays flaws.

As I have demonstrated, Kochan misrepresents what Barnes, Bloor and others in SSK set out to do (he does not acknowledge what their work is about) and he does not employ SSK material to resolve Heidegger’s limited understanding of the social (he does not accomplish an important part of what his book is supposed to be about.)

One can understand the book’s problems by expanding on Kochan’s glass-bulb metaphor. Kochan contends that Barnes and Bloor commit to a division that separates people and the world they seek to understand: a ‘glass bulb model.’ His perspective would benefit from viewing the Strong Programme as a working light bulb. It may employ a glass-bulb, but cannot be reduced to it.

To understand what it is, how it work and what it can offer, one must examine a light bulb’s entire constitution. Only by acknowledging what else is required to generate light and by considering what that light is meant to enable, can one present an accurate and useful analysis of its limitations and potential. It also shows why the glass bulb exists, and why it belongs in the broader system.

Contact details: p.schyfter@ed.ac.uk

References

Bloor, David. 1976. Knowledge and Social Imagery. Chicago: University of Chicago Press.

Bloor, David. 1997. Wittgenstein, Rules and Institutions. London: Routledge.

Bloor, David. 2007. “Epistemic Grace: Antirelativism as Theology in Disguise.” Common Knowledge 13 (2-3): 250-280. doi: 10.1215/0961754X-2007-007

Bloor, David. 2016. “Relativism Versus Absolutism: In Defense of a Dichotomy.” Common Knowledge 22 (3): 288-499. doi: 10.1215/0961754X-3622372

Collins, Harry. 1981. “Stages in the Empirical Programme of Relativism.” Social Studies of Science 11 (1): 3-10. doi: 10.1177/030631278101100101

Collins, Harry. 1983. “An Empirical Relativist Programme in the Sociology of Scientific Knowledge.” In Science Observed: Perspectives on the Social Study of Science, edited by Karin Knorr-Cetina and Michael Mulkay, 115–140. London: Sage.

Kochan, Jeff. 2017. Science as Social Existence: Heidegger and the Sociology of Scientific Knowledge. Cambridge: Open Book Publishers

Kochan, Jeff. 2018. “On the Sociology of Subjectivity: A Reply to Raphael Sassower.” Social Epistemology Review and Reply Collective 7 (5): 39-41.

Sassower, Raphael. 2018. “Heidegger and the Sociologists: A Forced Marriage?” Social Epistemology Review and Reply Collective 7 (5): 30-32.

Author Information: Bernard Wills, Memorial University of Newfoundland and Labrador, bwills@grenfell.mun.ca.

Wills, Bernard. “On the Limits of Any Scientism.” Social Epistemology Review and Reply Collective 7, no. 7 (2018): 34-39.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3Zn

See also:

Image by Vancouver Island University via Flickr / Creative Commons

 

Mizrahi is, alas, still confused though that perhaps is my fault. I did not attribute to him the view that non-scientific disciplines do not produce knowledge.[1] I am sorry if a cursory glance at my article created that impression but what I thought I had said was that this was the position known as strong scientism. Indeed, looking over my paper it seems that I made it quite clear that this position was ‘strong scientism’ and that Mizrahi defended something called ‘weak scientism’. According to this latter view the humane disciplines do indeed produce knowledge only of a qualitatively and quantitatively inferior kind. If this is not what weak scientism says I confess I don’t know what it says.

Thus, the opening salvo of his response, where he answers at some length a charge I did not make, has sailed clean over its intended target. (Mizrahi, 41-42) In my paper I distinguished weak scientism from strong scientism precisely on these grounds and then argued that the weaknesses of the former still dogged the latter: Mizrahi does not address this in his response. Here is a place where Mizrahi could have learned from humanities scholars and their practices of close reading and attended to the rhetorical and argumentative structure of my essay.

I began by critiquing ‘strong scientism’ which I said was not Mizrahi’s view and I did this by way of setting up my actual argument which was that Mizrahi’s proposed replacement ‘weak scientism’ suffered from the same basic flaws. I ask Mizrahi to read my response again and ask himself honestly if I accused him of being a proponent of ‘strong scientism’ rather than of ‘weak scientism’. To help him let me include the following citation from my piece:

I will focus, then, on the qualitative question and particularly on the claim that science produces knowledge and all the other things we tend to call knowledge are in fact not knowledge at all but something else. I will then consider Mr. Mizrahi’s peculiar version of this claim ‘weak scientism’ which is that while there may be knowledge of some sort outside of the sciences (it is hard, he thinks, to show otherwise) this knowledge is of a qualitatively lesser kind. (Wills, 18)

Asking Why Quantity of Production Matters

Mizrahi is still on about quantity. (Mizrahi, 42) I really have no idea why he is obsessed with this point. However, as he regards it as essential to ‘weak scientism’ I will quote what I said in a footnote to my essay: “Does Mizrahi mean to say that if a particular sub-discipline of English produces more articles in a given year than a small subfield of science then that discipline of English is superior to that subfield of science? I’m sure he does not mean to say this but it seems to follow from his words.” This point is surely not lost on him.

I have no firm opinion at all as to whether the totality of the sciences have produced more ‘stuff’ than the totality of the humanities between 1997 and 2017 and the reason is that I simply don’t care. I don’t accept quantity as a valid measure here unless it is backed up by qualitative considerations and if Mizrahi can’t make the case on qualitative grounds then quantity is simply irrelevant for the reason I gave: there are more commercials than there are artistic masterpieces. However, if Mizrahi still wants to fuss over quantitative metrics he faces the problem I raised.

While science in a global sense may indeed produce more sheer bulk of material than English, say, if there are subfields of science that do not produce more knowledge than subfields of English by this measure these must be inferior. Plus, what if it were true that Shakespeare scholars produced more papers than physicists? Would that cause Mizrahi to lower his estimate of physics? He would be an odd man if he did.

At any rate, there are all kinds of extrinsic reasons why scientific papers are so numerous that include the interests of corporations, governments, militaries and so on. The fact that there is so much science does not by itself indicate that there is anything intrinsically better about science and if science is intrinsically better that fact stands no matter how much of it there happens to be.

On the Power of Recursivity

To my argument that recursive processes can produce an infinite amount of knowledge he replies with an ineffectual jibe: “good luck publishing that!” (46) Well I am happy to inform him that I have indeed published ‘that’. I have published a number of papers on ancient and early modern philosophy that touch on the question of reflexivity and its attendant paradoxes as Mizrahi can find out by googling my name. Since he is so concerned about purely extrinsic measures of scholarly worth he will have to admit that there are in fact journals happy to ‘publish that’ and to that extent my point stands by his own chosen metric.

At any rate, in a further answer to this charge we get the following sophism: Besides, just as “recursive processes can extend our knowledge indefinitely in the field of mathematics,” they can also extend our knowledge in other fields as well, including scientific fields. That is, one “can produce a potential infinity of knowledge simply by reflecting recursively on the” (Wills 2018, 23) (sic) Standard Model in physics or any other scientific theory and/or finding. For this reason, Wills’ objection does nothing at all to undermine Weak Scientism.” (46)

Of course we can extend our knowledge indefinitely by reflecting on the standard model in physics just as Augustine says. But this has nothing whatsoever to do with whether a proposition is scientific or not. It can be done with any proposition at all. Nor is recursive doubling a scientific procedure in the terms described by Mizrahi. This is why quantitative claims about the superiority of science can never succeed unless, as I have said many times, they are backed up with qualitative considerations which would render a quantitative argument unnecessary.

On the Intentionality of the Ism

Mizrahi makes the standard response to the concerns I raised about sexism and colonialism. He denies he is a racist and indeed, Fox News style, turns the charge back on me. (44-45) He should understand, however, that my concern here is not personal but systemic racism. The version of scientific ideology he proposes has a history and that history is not innocent. It is a definition of knowledge and as such it has a social and political dimension. Part of this has been the exclusion of various others such as women or indigenous peoples from the socially sanctioned circle of knowers. This is the ‘privilege’ I refer to in my paper.

Mizrahi, as a participant in a certain tradition or practice of knowledge that claims and can often assert hegemony over other discourses, benefits from that privilege. That is not rocket science. Nor is the fact that, rightly or wrongly, Mizrahi is making hegemonic claims for science from which he himself stands to benefit. It is nothing to the point for Mizrahi to proclaim his innocence of any such intention or to use the ‘you are the real racist for calling me a racist’ ploy. As anyone familiar with the discourse about racism and colonialism can tell him, intention is not the salient feature of this sort of analysis but overall effect.

Also he has not distinguished an ideological critique from an ad hominem attack. I am not attacking him as a person but simply pointing that the position he takes on scientism has social, political and monetary implications that make his defense of weak-scientism ideologically loaded. And let me emphasize again that this has nothing whatsoever to do with Mizrahi’s intentions or personal feelings: I am happy to consider him a perfect gentleman. Perhaps a consideration of Marx would help him see this point a bit better and I can assure Mizrahi that Marx’s impact rating is stellar.

So Who Is Correct?

Of course, as Mizrahi says, all this is forgivable if his overall thesis is correct. (45) Apparently, I truly did not understand that “Even if it is true that “craft knowledge has roughly 3 million-year head start,” it is irrelevant to whether Weak Scientism is true or false. This is because Weak Scientism is a thesis about academic knowledge or research produced by academic fields of study (Mizrahi 2017a, 356; Mizrahi 2017b, 11; Mizrahi 2018a, 12). (46) I admit this point did escape me.[2]

This means that if I find knowledge produced outside the academy with qualities comparable to scientific knowledge that is irrelevant to the argument. Well, by all means then, let me limit my consideration to the academy since Mizrahi has defined that as his sole battleground. I gave many examples of knowledge in my paper that come from an academic context. Let us consider these with respect to Mizrahi’s chosen criteria for “good explanations, namely, unification, coherence, simplicity, and testability (Mizrahi 2017a, 360-362; Mizrahi 2017b, 19-20; Mizrahi 2018a, 17).” (47) (46)

Mizrahi seems to think this applies to a statement I made about Joyce scholars. (47) Let me take them as my ‘academic’ example. I take it as a given that a masterful exposition of Portrait of the Artist as Young Man will show the unity, coherence and simplicity of the work’s design to the extent that these are artistically desired features. What about testability? How does a Joyce scholar test what he says? As I said he tests it against the text. He does this in two ways.

First on the level of direct observation he establishes what Stephen Daedalus, say, does on page 46. This is, as far as I can see, a perfectly reputable kind of knowledge and if we can answer the question about page 46 directly we do not need to resort to any more complex explanatory processes. The fact that such a procedure is perfectly adequate to establish the truth means that scientific procedures of a more complex kind are unnecessary. The use of scientific method, while it may mean better knowledge in many cases, does not mean better knowledge here so Mizrahi’s complaint on this score is beside the point. (47)

Statue of James Joyce in Dublin, Ireland
Image by Loic Pinseel via Flickr / Creative Commons

What Can Improve Knowledge?

Of course, the Joyce scholar will also have an interpretation of Portrait of the Artist as a Young Man. This is where he answers broader questions about the work’s meaning, structure, unity and so on. This also entails the test of looking at the text not at any particular point but as a whole. What in this hermeneutic process would be improved by ‘scientific method’ as Mizrahi describes it? Where does the Joyce scholar need to draw testable consequences from a novel hypothesis and test it with an experiment? What would that even mean in this context?

His test is close reading as this is practiced in the discipline of English literature and he has peers who judge if he has done this well or badly. What is amiss with this process that it could be improved by procedures that have nothing to do with determining the meaning and significance of books? How on this question could science even begin to show its supposed ‘superiority’? It seems to me the only option for Mizrahi here is to deny that the Joyce scholar knows anything (beyond bare factual information) and this means, alas, that his position once again collapses into strong scientism.

I think, however, that I see where Mizrahi’s confusion lies. He seems to think I am saying the following: Joyce scholars look at a book to determine a fact just as scientists look at the world to determine a fact ergo Joyce scholars are scientists. (47) Let me reassure him I am not so jejune. Of course, field notes and other forms of direct observation are part of the arsenal of science. Plus, scientific statements are, at the end of the day, brought into relationship with observation either directly or indirectly. Still, Joyce scholars do not just look at page numbers or what characters are wearing in Chapter 2. They formulate interpretations of Joyce.

In this way too scientists not only observe things but formulate and test hypotheses, construct theories and so on. In some ways these may be comparable processes but they are not identical. Hermeneutics is not just an application of hyothetico-deductive method to a book. Conclusions about Joyce are not products of experimental testing and I can conceive of no way in which they could be strengthened by them except in a purely ancillary sense (ie. we might learn something indirect about Ulysses by exhuming Joyce’s bones).

Thus, Mizrahi’s argument that scientific explanations have more ‘good-making properties’ overall (47) is, whether true or not, irrelevant to the myriad of cases in which scientific explanations are either A. unnecessary or B. inapplicable. Once again we teeter on the brink of strong scientism (which Mizrahi rejects) for we are now forced to say that if a scientific explanation of a phenomenon is not to be had then there can be no other form of explanation.

There Are Radical Differences in How Knowledge Is Produced

Let me go back to my daughter who was not out in a field or cave somewhere but in a university classroom when she presented her analysis of Scriabin’s Prometheus chord. This, I hope, satisfies Mizrahi’s demand that I confine myself to an ‘academic’ context. Both her instructor and her classmates agreed that her analysis was sound. Why? Because it was the clearest, simplest explanation that answered the question of how Scriabin created this chord. It was an abduction that the community of knowers of which she was a part found adequate and that was the end of the story.

The reason, let me emphasize again since Mizrahi has such trouble with the point, is that this was all the question required. Kristin did not deduce a “…consequence that follows from a hypothesis plus auxiliary hypothesis” (47) to be made subject of a testable prediction. Why? Because that is not how knowledge is produced in her domain and such a procedure would add no value to her conclusion which concerned not facts about the natural world but Scriabin’s thought processes and aesthetic intentions.

Again it seems that either Mizrahi must concede this point OR adopt the strong scientist position that Kristin only seems to know something about Scriabin while actually there is nothing to be known about Scriabin outside the experimental sciences. So, to make his case he must still explain why science can produce better results in music theory, which IS an academic subject, than explanatory procedures currently used in that domain. Otherwise the superiority of science is only contextual which is a trivial thesis denied by no one.

Thus, Mizrahi is still bedeviled by the same problem. How is science supposed to show its superiority in domains where its explanatory procedures are simply not necessary and would add no value to existing explanations? I do not think Mizrahi has established the point that:”…if distinct fields of study have the same aim (i.e., to explain), then their products (i.e., explanations) can be evaluated with respect to similar criteria, such as unification, coherence, simplicity, and testability (Mizrahi 2017a, 360-362; Mizrahi 2017b, 19-20; Mizrahi 2018a, 17). Mizrahi says ‘similar’ but his argument actually depends on these criteria being ‘identical’ such that we can judge all explanations by one pre-set standard: in this case hypothetico-deductive method.

But this is nonsense. All disciplines use abduction, true, but they do not all arrive at the ‘best explanation’ by the same procedures. Their procedures are analogical not univocal. Failure to see this distinction seems to be at the root of Mizrahi’s errors. Differing explanatory processes can be compared but not identified as can be seen if we imagine a classicist taking his copy of the Iliad down to the chemistry lab to be analyzed for its meaning. The Chemistry lab here is the classicist’s brain! To use a less flippant example though there are sciences such as paleontology that make liberal use of narrative reconstruction (i.e. how those hominid bones got in that tiny cave) which is a form of abduction that does not correspond simply to the standard H/D model. Still, the story the paleontologist reconstructs, if it is a good one, has unity, simplicity and coherence regardless of the fact that it has not achieved this by a robotic application of H/D but rather by another, less formalized, form of inference.

Thus, I think Mizrahi’s reforming zeal (48) has got the better of him. He does not help his case by issuing the Borg-like boast that ‘resistance is futile’. If I recall my Trek lore correctly, the boast that ‘resistance is futile’ ended in ignominious defeat. One final point. One should never proofread one’s own papers, I did indeed misspell Mizrahi for which I heartily apologize.

Contact details: bwills@grenfell.mun.ca

References

Mizrahi, Moti. “Weak Scientism Defended Once More.” Social Epistemology Review and Reply Collective 7, no. 6 (2018): 41-50.

Wills, Bernard. “Why Mizrahi Needs to Replace Weak Scientism With an Even Weaker Scientism.” Social Epistemology Review and Reply Collective 7, no. 5 (2018): 18-24.

[1] Though, as I point out in my response (Wills, 22), he clearly vacillates on this point.

[2] It is an odd kind of scientism that holds science is superior within the academy while leaving open the question of whether non-scientific knowledge outside the academy may be superior to science. However, if that is Mizrahi’s position I will not quibble.

Author Information: Moti Mizrahi, Florida Institute of Technology, mmizrahi@fit.edu

Mizrahi, Moti. “The (Lack of) Evidence for the Kuhnian Image of Science.” Social Epistemology Review and Reply Collective 7, no. 7 (2018): 19-24.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3Z5

See also:

Image by Narcis Sava via Flickr / Creative Commons

 

Whenever the work of an influential philosopher is criticized, a common move made by those who seek to defend the influential philosopher’s work is to claim that his or her ideas have been misconstrued. This is an effective move, of course, for it means that the critics have criticized a straw man, not the ideas actually put forth by the influential philosopher. However, this move can easily backfire, too.

For continued iterations of this move could render the ideas in question immune to criticism in a rather ad hoc fashion. That is to say, shouting “straw man” every time an influential philosopher’s ideas are subjected to scrutiny is rather like shouting “wolf” when none is around; it could be seen as an attempt to draw attention to that which may not be worthy of attention.

The question, then, is whether the influential philosopher’s ideas are worthy of attention and/or acceptance. In particular, are Kuhn’s ideas about scientific revolutions and incommensurability worthy of acceptance? As I have argued, along with a few other contributors to my edited volume, The Kuhnian Image of Science: Time for a Decisive Transformation? (2018), they may not be because they are based on dubious assumptions and fallacious argumentation.

In their reviews of The Kuhnian Image of Science: Time for a Decisive Transformation? (2018), both Markus Arnold (2018) and Amanda Bryant (2018) complain that the contributors who criticize Kuhn’s theory of scientific change have misconstrued his philosophy of science and they praise those who seek to defend the Kuhnian image of science. In what follows, then, I would like to address their claims about misconstruing Kuhn’s theory of scientific change. But my focus here, as in the book, will be the evidence (or lack thereof) for the Kuhnian image of science. I will begin with Arnold’s review and then move on to Bryant’s review.

Arnold on the Evidence for the Kuhnian Image of Science

Arnold (2018, 42) states that “one of the results of [his] review” is that “the ‘inductive reasoning’ intended to refute Kuhn’s incommensurability thesis (found in the first part of the book) is actually its weakest part.” I am not sure what he means by that exactly. First, I am not sure in what sense inductive reasoning can be said to refute a thesis, given that inductive arguments are the sort of arguments whose premises do not necessitate the truth of their conclusions, whereas a refutation of p, if sound, supposedly shows that p must be false.

Second, contrary to what Arnold claims, I do not think that the chapters in Part I of the book contain “‘inductive reasoning’ intended to refute Kuhn’s incommensurability thesis” (Arnold 2018, 42). Speaking of my chapter in particular, Chapter 1 (Mizrahi 2018b, 32-38), it contains two arguments intended to show that there is no deductive support for the Kuhnian thesis of taxonomic incommensurability (Mizrahi 2018b, 32), and an argument intended to show that there is no inductive support for the Kuhnian thesis of taxonomic incommensurability (Mizrahi 2018b, 37).

These arguments are deductive, not inductive, for their premises, if true, guarantee the truth of their conclusions. Besides, to argue that there is no evidence for p is not the same as arguing that p is false. None of my arguments is intended to show that p (namely, the Kuhnian thesis of taxonomic incommensurability) is false.

Rather, my arguments show that there is no evidence for p (namely, the Kuhnian thesis of taxonomic incommensurability). For these reasons, as a criticism of Part I of the book, Arnold’s (2018, 42) claim that “the ‘inductive reasoning’ intended to refute Kuhn’s incommensurability thesis (found in the first part of the book) is actually its weakest part” completely misses the mark.

Moreover, the only thing I could find in Arnold’s review that could be construed as support for this claim is the aforementioned complaint about straw-manning Kuhn. As Arnold (2018, 43) puts it, “the counter-arguments under consideration brought forward against his model seem, paradoxically, to underestimate the complexity of Kuhn’s claims.”

In other words, Kuhn’s theory of scientific change is so complex and those who attempt to criticize it fail to appreciate its complexity. But why? Why do the criticisms fail to appreciate the complexity of Kuhn’s theory? How complex is it such that it defies interpretation and criticism? Arnold does not say. Instead, he (Arnold 2018, 43) states that “it is not clear, why Kuhn’s ‘image of science’ should be dismissed because […] taxonomic incommensurability ‘is the exception rather than the rule’ [Mizrahi 2018b,] (38).”

As I argue in Chapter 1, however, the fact that taxonomic incommensurability “is the exception rather than the rule” (Mizrahi 2018b, 38) means that Kuhn’s theory of scientific change is a bad theory because it shows that Kuhn’s theory has neither explanatory nor predictive power. A “theory” with no explanatory and/or predictive power is no theory at all (Mizrahi 2018b, 37-38). From his review, however, it is clear that Arnold thinks of Kuhn’s image of science as a theory of scientific change.

For instance, he talks about “Kuhn’s epistemology” (Arnold 2018, 45), “Kuhn’s theory of incommensurability” (Arnold 2018, 46), and Kuhn’s “complex theory of science” (Arnold 2018, 42). If Kuhn’s thesis of taxonomic incommensurability has no explanatory and/or predictive power, then it is a bad theory, perhaps not even a theory at all, let alone a general theory of scientific knowledge or scientific change.

In that respect, I found it rather curious that, on the one hand, Arnold approves of Alexandra Argamakova’s (2018) criticism of the universal ambitions of Kuhn’s image of science, but on the other hand, he wants to attribute to Kuhn the view that “scientific revolutions are rare” (Arnold 2018, 43). Arnold quotes with approval Argamakova’s (2018, 54) claim that “distinct breakthroughs in science can be marked as revolutions, but no universal system of criteria for such appraisal can be formulated in a normative philosophical manner” (emphasis added).

In other words, if Argamakova is right, then there can be no philosophical theory of scientific change in general, Kuhnian or otherwise. So Arnold cannot be in agreement with Argamakova without thereby abandoning the claim that Kuhn’s image of science is an “epistemology” (Arnold 2018, 45) of scientific knowledge or a “complex theory of science” (Arnold 2018, 42).

Arnold (2018, 45) also asserts that “the allegation that Kuhn developed his theory on the basis of selected historical cases is refuted” by Kindi (2018). Even if that were true, it would mean that Kuhn’s theory has no inductive support, as I argue in Chapter 1 of the book (Mizrahi 2018b, 32-38). So I am not sure how this point is supposed to help Arnold in defending the Kuhnian image of science. For if there is no inductive support for the Kuhnian image of science, as Arnold seems to think, and there is no deductive support either, as I (Mizrahi 2018b, 25-44) and Park (2018, 61-74) argue, then what evidence is there for the Kuhnian image of science?

For present purposes, the important point is not how Kuhn “developed his theory” (Arnold 2018, 45) but rather what supports his theory of scientific change. What is the evidence for a Kuhnian theory of scientific change? If I am right (Mizrahi 2018b), or if Park (2018) is right, then there is neither deductive support nor inductive support for a Kuhnian theory of scientific change. If Argamakova is right, then there can be no general theory of scientific change at all, Kuhnian or otherwise.

It is also important to note here that Arnold (2018, 45) praises both Kindi (2018) and Patton (2018) for offering “a close reading of Kuhn’s work,” but he does not mention that they offer incompatible interpretations of that work, specifically, of the evidence for Kuhn’s ideas about scientific change. On Kindi’s reading of Kuhn, the argument for the Kuhnian image of science is a deductive argument from first principles, whereas on Patton’s reading of Kuhn, the argument for the Kuhnian image of science is an inference to the best explanation (see Patton 2015, cf. Mizrahi 2018a, 12-13; Mizrahi 2015, 51-53).

Bryant on the Evidence for the Kuhnian Image of Science

Like Arnold, Bryant (2018, 1) wonders whether Kuhn’s views on scientific change can be pinned down and criticized or perhaps there are many “Thomases Kuhn.” Again, I think we do not want to make Kuhn’s views too vague and/or ambiguous (Argamakova 2018, 47-50), and thus immune to criticism in a rather ad hoc fashion. For that, in addition to being based on dubious assumptions and fallacious argumentation, would be another reason to think that Kuhn’s views are not worthy of acceptance.

Bryant (2018, 1) also wonders “whether the so-called Kuhnian image of science is really so broadly endorsed as to be the potential subject of (echoing Kuhn’s own phrase) a ‘decisive transformation’.” As I see it, however, the question is not whether the Kuhnian image of science is “broadly endorsed.” Rather, the question is whether “we are now possessed” by it. When Kuhn wrote that (in)famous first line of the introduction to The Structure of Scientific Revolutions, the image of science by which we were possessed was a positivist image of science according to which science develops “by the accumulation of individual discoveries and inventions” (Kuhn 1962/1996, 2). Arguably, philosophers of science were never possessed by such a positivist image of science as much as they are possessed by the Kuhnian image of science.

This is evidenced by the fact that no positivist work in philosophy of science has had as much impact as Kuhn’s seminal work (Mizrahi 2018a, 1-2). Accordingly, even if the Kuhnian image of science is not “broadly endorsed,” it is quite clear that philosophers of science are possessed by it. For this reason, an “exorcism,” or a “decisive transformation,” is required in order to rid ourselves of this image of science. And what better way to do so than by showing that it is based on dubious assumptions and fallacious argumentation.

As far as the evidence (or lack thereof) for the Kuhnian image of science, Bryant (2018, 2) claims that “Case studies can be interesting, informative, and evidential” (emphasis added). I grant that case studies can be interesting and informative, but I doubt that they can be evidential. From “Scientific episode E has property F,” it does not follow that F is a characteristic of scientific episodes in general. As far as Kuhn is concerned, it is clear that he used just a few case studies (e.g., the phlogiston case) in support of his ideas about scientific change and incommensurability.

The problem with that, as I argue in Chapter 1 of the book (Mizrahi 2018b, 32-38), is that no general theory of scientific change can be derived from a few cherry-picked case studies. Even if we grant that the phlogiston case is a genuine case of a so-called “Kuhnian revolution” and taxonomic incommensurability, despite the fact that there are rebutting defeaters (Mizrahi 2018b, 33-36), no general conclusions about the nature of science can be drawn from one (or even a few) such cases (Mizrahi 2018b, 36-37).

From the fact that one (or a few) cherry-picked episode(s) from the history of science exhibits a particular property, it does not follow that all scientific episodes have that property; otherwise, from the “Piltdown man” episode we would have to conclude that fraud characterizes scientific discovery in general (Mizrahi 2018b, 37-38).

Speaking of scientific discovery, Bryant (2018, 2) takes issue with the fact that I cite “just two authors, Eric Oberheim and Paul Hoyningen-Huene, who use the language of discovery to characterize incommensurability.” For Bryant (2018, 2), this suggests that “it isn’t clear that the assumption Mizrahi takes pains to reject is particularly widespread” (emphasis added). I suppose that “the assumption” in question here is that Kuhn “discovered” incommensurability.

If so, then I would like to clarify that I mention the fact that Oberheim and Hoyningen-Huene talk about incommensurability in terms of discovery, and claim that Kuhn “discovered” it, not to argue against it (i.e., to argue that Kuhn did not discover incommensurability), but rather to show that some of the elements of the Kuhnian image of science, such as incommensurability, are sometimes taken for granted. When it is said that someone has discovered something, it gives the impression that what has been discovered is a fact, and so no arguments are needed.

When it comes to incommensurability, however, it is far from clear that it is a fact about scientific change, and so good arguments are needed in order to establish that episodes of scientific change exhibit taxonomic incommensurability. If I am right, or if Park (2018) and Sankey (2018) are right, then there are no good arguments that establish this.

Not Conclusions, But Questions

In light of the above, I think that the questions raised in the edited volume under review remain urgent (cf. Rehg 2018). Are there good reasons or compelling evidence for the Kuhnian model of theory change in science? If there are no good reasons or compelling evidence for such a model, as I (Mizrahi 2018b), Park (2018), and Sankey (2018) argue, what’s next for philosophers of science? Should we abandon the search for a general theory of science, as Argamakova (2018) suggests? Are there better models of scientific change? Perhaps evolutionary (Marcum 2018) or orthogenetic (Renzi and Napolitano 2018) models?

• • •

I would like to thank Markus Arnold and Amanda Bryant for their thoughtful reviews. I am also grateful to Adam Riggio and Eric Kerr for organizing this book symposium and for inviting me to participate.

Contact details: mmizrahi@fit.edu

References

Argamakova, Alexandra. “Modeling Scientific Development: Lessons from Thomas Kuhn.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 45-59. London: Rowman & Littlefield, 2018.

Arnold, Markus. “Is There Anything Wrong With Thomas Kuhn?” Social Epistemology Review and Reply Collective 7, no. 5 (2018): 42-47.

Bryant, Amanda. “Each Kuhn Mutually Incommensurable.” Social Epistemology Review and Reply Collective 7, no. 6 (2018): 1-7.

Kindi, Vasso. “The Kuhnian Straw Man.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 95-112. London: Rowman & Littlefield, 2018.

Kuhn, Thomas S. The Structure of Scientific Revolutions. Third Edition. Chicago: The University of Chicago Press, 1962/1996.

Marcum, James A. “Revolution or Evolution in Science? A Role for the Incommensurability Thesis?” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 155-173. London: Rowman & Littlefield, 2018.

Mizrahi, Moti. “A Reply to Patton’s ‘Incommensurability and the Bonfire of the Meta-Theories.” Social Epistemology Review and Reply Collective 4, no. 10 (2015): 51-53.

Mizrahi, Moti. “Introduction.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 1-22. London: Rowman & Littlefield, 2018a.

Mizrahi, Moti. “Kuhn’s Incommensurability Thesis: What’s the Argument?” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 25-44. London: Rowman & Littlefield, 2018b.

Park, Seungbae. “Can Kuhn’s Taxonomic Incommensurability be an Image of Science?” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 61-74. London: Rowman & Littlefield, 2018.

Patton, Lydia. “Incommensurability and the Bonfire of the Meta-Theories: Response to Mizrahi.” Social Epistemology Review and Reply Collective 4, no. 7 (2015): 51-58.

Patton, Lydia. “Kuhn, Pedagogy, and Practice: A Local Reading of Structure.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 113-130. London: Rowman & Littlefield, 2018.

Rehg, William. “Kuhn’s Image of Science.” Metascience (2018): https://doi.org/10.1007/s11016-018-0306-2.

Renzi, Barbara G. and Giulio Napolitano. “The Biological Metaphors of Scientific Change.” In The Kuhnian Image of Science: Time for a Decisive Transformation?, edited by Moti Mizrahi, 177-190. London: Rowman & Littlefield, 2018.

Author Information: Alcibiades Malapi-Nelson, Humber College, alci.malapi@outlook.com

Malapi-Nelson, Alcibiades. “On a Study of Steve Fuller.” Social Epistemology Review and Reply Collective 7, no. 7 (2018): 25-29.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3Za

Happy birthday, Steve!

Steve Fuller, seen here just under seven years ago in New York City, gave a name to what is now the sub-discipline and community of social epistemology. Like all thriving communities, it’s gotten much more diverse and creative with time. As has Steve Fuller.
Image by Babette Babich, courtesy of Steve Fuller

 

Francis Remedios and Val Dusek have written a thorough and exhaustive account of Steve Fuller’s work, ranging (mostly) from 2003 to 2017. Fuller’s earlier work was addressed in Remedios’ previous book, Legitimizing Scientific Knowledge (2003) – to which this one is the logical continuation. Back then Remedios introduced the reader to Fuller’s inaugurated field of research, “social epistemology”, encompassing the philosopher’s work from the late 1980’s until the turn of the century.

Given that Steve Fuller is one of the most prolific authors alive, having published (so far) 30 books and hundreds of articles, Remedios & Dusek’s book (as Remedios’ previous book), fill a practical need: It is hard to keep up with Fuller’s elevated rate of production. Indeed, both the seasoned reader and the neophyte to Fuller’s fairly overwhelming amount of writing, will need a panoramic and organic view of his breathtaking scope of research. Remedios & Dusek successfully accomplish the task of providing it.

The Bildung of a Person and His Concepts

Remedios & Dusek’s book starts with a Foreword by Fuller himself, followed by an Introduction (Ch. 1) by the authors. The bulk of the monograph is comprised by several chapters addressing Fuller’s ideas on Science and Technology Studies (Ch. 2), Social Epistemology (Ch. 3), the University & Interdisciplinarity (Ch. 4), Intelligent Design (Ch. 5), Cosmism & Gnosticism (Ch. 6), and the Proactionary principle (Ch. 7).

There is some connective overlap between chapters. In each one of them, Remedios & Dusek provide an articulated landscape of Fuller’s ideas, the occasional criticism, and a final summary. The book ends up with an appropriately short Conclusion (Ch. 8) and a PostScript (Ch. 9) – an interview’s transcription.

It is worth pointing out that the work is chronologically (and conveniently) in sync with Fuller’s own progressive intellectual development, and thus, the first part roughly focuses on his earlier work, whereas the second part on his later writings.[1]

The first chapter after the Introduction (Chapter 2, “Fuller on Science and Technology Studies” (STS), already provides a cue for a theme that would transfix the arc of Fuller’s thoughts spanning the last decade. As I see it, Steve Fuller is arguably going to extents that some may deem controversial (e.g., his endorsement of some type of Intelligent Design, his backing up of transhumanism, his gradual “coming out” as a Catholic) due to one main reason: A deep preoccupation with the future of humanity vis-à-vis pervasively disrupting emerging technologies.

Accordingly, Fuller wants to fuel a discussion that may eventually salvage whatever we find out that being human consists of – even if this “human” will resemble little the “humans” as we know them now. At this point, the “cue” is not self-evident: Fuller does not like Bruno Latour’s Actor-Network theory. In Fuller’s view, Latour’s framework triggers both an epistemological and an ethical problem: it diffuses human agency and by extension, responsibility – respectively. Equating human agency with the causal power attributed to the “parliament of things” ultimately reverberates in an erosion of human dignity. Here the cue becomes clearer: It is precisely this human dignity that Fuller will later defend in his attack of Darwinism.

Humanity Beyond the Human

Chapter 3, “Fuller’s Social Epistemology and Epistemic Agency”, provides a further clue to Fuller’s agenda. Remedios & Dusek coined a sentence that may constitute one of the most succinct, although fundamental, pillars in Steve Fuller’s grand framework: “For Fuller, humanity would continue if homo sapiens end”.[2] This statement ingeniously captures Fuller’s position that “humanity” (a “project” started during the Medieval Ages and developed during Modernity), is something that homo sapiens earn – or not. Biology might provide a compatible receptacle for this humanity to obtain, but it is by no means an automatic occurrence. One strives to get it – and many in fact fail to reach it.

In the context of this theme, Fuller steers away from an “object-oriented” (social) epistemology to an “agent-oriented” one: Instead of endlessly ruminating about possible theories of knowledge (which would render an accurate picture of the object – social or not), one starts to take into account the possibilities that open up after considering transforming the knowing agent itself. This transition foretells Fuller’s later view: a proactionary approach[3] to experimentation where the agent commits to the alteration of reality – as opposed to a precautionary stance, where the knower passively waits for reality’s feedback before further proceeding.

In chapter 4, “The University and Interdisciplinarity”, Remedios & Dusek treat Fuller’s views on the situation of institutions of higher education currently confronting the relentless compartmentalization of knowledge. Fuller praises Wilhelm von Humboldt’s reinvention of the notion of the university in the 19th century, where the individual would acquire a holistic formation (bildung), and which would produce in return tangible benefits to society out of the growth of knowledge in general and science in particular.

This model, which catapulted Germany to the forefront of research, and which was emulated by several Western nations, has been gradually eroded by neoliberalism. Neoliberal stances, spurred by an attention to clients’ requests, progressively severed the heretofore integral coexistence of research and teaching, creating instead pockets of specialization – along with their own idiosyncratic jargon. This fragmentation, in turn, has generated an overall ignorance among scientists and intellectuals regarding the “big picture”, which ultimately results in a stagnation of knowledge production. Fuller advocates for a return to the Humboldtian ideal, but this time incorporating technology as in integral part of the overall academic formation in the humanities.

Roles for Religion and God

Chapter 5, “Fuller’s Intelligent Design” (ID), deals with the philosopher’s controversial views regarding this position, particularly after the infamous Dover Trial. Remedios & Dusek have done a very good job at tracing the roots and influences behind Fuller’s ideas on the issue. They go all the way back to Epicurus and Hume, including the strong connection between these two and Charles Darwin, particularly in what concerns the role of “chance” in evolution. Those interested in this illuminating philosophical archeology will be well served after reading this chapter, instead of (or as a complement to) Steve Fuller’s two books on the topic.[4]

Chapter 6, “Fuller, Cosmism and Gnosticism” lays out the relationship of the philosopher with these two themes. Steve Fuller recognizes in Russian cosmism an important predecessor to transhumanism – along with the writings of the mystical Jesuit Teilhard de Chardin.

He is lately catering to a re-emergence of interest among Slavs regarding these connections, giving talks and seminars in Russia. Cosmism, a heterodox offspring of Russian Orthodoxy, aims at a reconstruction of the (lost) paradise by means of reactivation of a type of “monads” spread-out throughout the universe – particles that disperse after a person dies. Scientific progress would be essential in order to travel throughout the cosmos retrieving these primordial “atoms” of people of the past, so that they could be one day resurrected. Russia would indeed have a cosmic ordering mission. This worldview is a particular rendition of the consequences of Christ’s Resurrection, which was denounced by the Orthodox Church as heretical.

Nevertheless, it deeply influenced several Slavic thinkers, who unlike many Western philosophers, did have a hard time reconciling their (Orthodox) Christianity with reason and science. This syncretism was a welcomed way for them to “secularize” the mystical-prone Christian Orthodoxy and infuse it with scientific inquiry. As a consequence, rocket science received a major thrust for development. After all, machines had to be built in order to retrieve these human particles so that scientifically induced global resurrection occurs.

One of the more important global pioneers in rocket engines, Konstantin Tsiolkovsky (who later received approval by Joseph Stalin to further develop space travel research), was profoundly influenced by it. In fact, increasingly more scholars assert that despite the official atheism of the Soviet Union, cosmism was a major driving force behind the Soviet advances, which culminated in the successful launch of the Sputnik.

Chapter 7, “Proactionary and Precautionary Principles and Welfare State 2.0”, is the last chapter before the Conclusion. Here Remedios & Dusek deal with Fuller’s endorsement of Max More’s Proactionary Principle and the consequent modified version of a Welfare State. The proactionary approach, in contradistinction with the precautionary principle (which underpins much of science policy in Europe), advocates for a risk-taking approach, justified partly in the very nature of Modern science (experimentation without excessive red tape) and partly in what is at stake: the survival of our species. Steve Fuller further articulates the proactionary principle, having written a whole book on the subject[5] – while More wrote an article.

The Roles of This Book

Remedios & Dusek have done an excellent job in summarizing, articulating and criticizing the second half of Steve Fuller’s vast corpus – from the early 2000s until last year. I foresee a successful reception by thinkers concerned with the future of humanity and scholars interested in Fuller’s previous work. As a final note, I will share a sentiment that will surely resonate with some – particularly with the younger readers out there.

As noted in the opening remarks, Remedios & Dusek’s book fill a gap in what concerns the possibility of acquiring an articulated overview of Fuller’s thought, given his relentless rate of publication. However, the sheer quantity to keep up with is not the only issue. These days, more than “the written word” may be needed in order to properly capture the ideas of authors of Fuller’s calibre. As I observed elsewhere,[6] reading Fuller is a brilliant read – but it is not an easy read.

It may be fair to say that, as opposed to, say, the relatively easy reading of an author like Steven Pinker, Steve Fuller’s books are not destined to be best-sellers among laymen. Fuller’s well put together paragraphs are both sophisticated and precise, sometimes long, paying witness to an effort for accurately conveying his multi-layered thought processes – reminding one of some German early modern philosophers. Fortunately, there is now a solid source of clarity that sheds effective light on Fuller’s writing: his available media. There are dozens of video clips (and hundreds of audio files[7]) of his talks, freely available to anyone. It may take a while to watch and listen to them all, but it is doable. I did it. And the clarity that they bring to his writings is tangible.

If Fuller is a sophisticated writer, he certainly is a very clear (and dare I say, entertaining) speaker. His “talking” functions as a cognitive catalyst for the content of his “writing” – in that, he is returning to the Humboldtian ideal of merged research and teaching. Ideally, if one adds to these his daily tweets,[8] now we have at reach the most complete picture of what would be necessary to properly “get” a philosopher like him these days. I have the feeling that, regardless of our settled ways, this “social media” component, increasingly integrated with any serious epistemic pursuit, is here to stay.

Contact details: alci.malapi@outlook.com

References

Fuller, S. (2007). Science Vs. Religion?: Intelligent Design and the Problem of Evolution. Cambridge, UK: Polity.

Fuller, S. (2008). Dissent Over Descent: Intelligent Design’s Challenge to Darwinism. Cambridge, UK: Icon.

Fuller, S. (2014). The Proactionary Imperative: A Foundation for Transhumanism. Hampshire, UK: Palgrave Macmillan.

Malapi-Nelson, A. (2013). “Book review: Steve Fuller, Humanity 2.0: What it Means to be Human Past, Present and Future.” International Sociology Review of Books 28(2): 240-247.

Remedios, F. and Dusek, V. (2018). Knowing Humanity in the Social World: The Path of Steve Fuller’s Social Epistemology. London, UK: Palgrave Macmillan.

[1] With the exception of the PostScript, which is a transcription of an interview with Steve Fuller mostly regarding the first period of his work.

[2] Remedios & Dusek 2018, p. 34

[3] Remedios & Dusek 2018, p. 40

[4] Fuller 2007 and Fuller 2008

[5] Fuller 2014

[6] Malapi-Nelson 2013

[7] warwick.ac.uk/fac/soc/sociology/staff/sfuller/media/audio

[8] Some of which are in fact reproduced by Remedios & Dusek 2018 (e.g. p. 102).

Author Information: Moti Mizrahi, Florida Institute of Technology, mmizrahi@fit.edu

Mizrahi, Moti. “Weak Scientism Defended Once More.” Social Epistemology Review and Reply Collective 7, no. 6 (2018): 41-50.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3Yx

See also:

One of Galileo’s original compasses, on display at the Museo Galileo, a feature of the Instituto e Museo di Storia della Scienza in Florence, Italy.
Image by Anders Sandberg via Flickr / Creative Commons

 

Bernard Wills (2018) joins Christopher Brown (2017, 2018) in criticizing my defense of Weak Scientism (Mizrahi 2017a, 2017b, 2018a). Unfortunately, it seems that Wills did not read my latest defense of Weak Scientism carefully, nor does he cite any of the other papers in my exchange with Brown. For he attributes to me the view that “other disciplines in the humanities [in addition to philosophy] do not produce knowledge” (Wills 2018, 18).

Of course, this is not my view and I affirm no such thing, contrary to what Wills seems to think. I find it hard to explain how Wills could have made this mistake, given that he goes on to quote me as follows: “Scientific knowledge can be said to be qualitatively better than non-scientific knowledge insofar as such knowledge is explanatorily, instrumentally, and predictively more successful than non-scientific knowledge” (Mizrahi 2018a, 7; quoted in Wills 2018, 18).

Clearly, the claim ‘Scientific knowledge is better than non-scientific knowledge’ entails that there is non-scientific knowledge. If the view I defend entails that there is non-scientific knowledge, then it cannot also be my view that “science produces knowledge and all the other things we tend to call knowledge are in fact not knowledge at all but something else” (Wills 2018, 18).

Even if he somehow missed this simple logical point, reading the other papers in my exchange with Brown should have made it clear to Wills that I do not deny the production of knowledge by non-scientific disciplines. In fact, I explicitly state that “science produces scientific knowledge, mathematics produces mathematical knowledge, philosophy produces philosophical knowledge, and so on” (Mizrahi 2017a, 353). Even in my latest reply to Brown, which is the only paper from my entire exchange with Brown that Wills cites, I explicitly state that, if Weak Scientism is true, then “philosophical knowledge would be inferior to scientific knowledge both quantitatively (in terms of research output and research impact) and qualitatively (in terms of explanatory, instrumental, and predictive success)” (Mizrahi 2018a, 8).

If philosophical knowledge is quantitatively and qualitatively inferior to scientific knowledge, then it follows that there is philosophical knowledge. For this reason, only a rather careless reader could attribute to me the view that “other disciplines in the humanities [in addition to philosophy] do not produce knowledge” (Wills 2018, 18).

There Must Be Some Misunderstanding

Right from the start, then, Wills gets Weak Scientism wrong, even though he later writes that, according to Weak Scientism, “there may be knowledge of some sort outside of the sciences” (Wills 2018, 18). He says that he will ignore the quantitative claim of Weak Scientism and focus “on the qualitative question and particularly on the claim that science produces knowledge and all the other things we tend to call knowledge are in fact not knowledge at all but something else” (Wills 2018, 18). Wills can focus on whatever he wants, of course, but that is not Weak Scientism.

Weak Scientism is not the view that only science produces real knowledge; that is Strong Scientism (Mizrahi 2017a, 353). Rather, Weak Scientism is the view that, “Of all the knowledge we have [i.e., there is knowledge other than scientific knowledge], scientific knowledge is the best knowledge” (Mizrahi 2017a, 354). In other words, scientific knowledge “is simply the best; better than all the rest” (Mizrahi 2017b, 20). Wills’ criticism, then, misses the mark completely. That is, it cannot be a criticism against Weak Scientism, since Weak Scientism is not the view that “science produces knowledge and all the other things we tend to call knowledge are in fact not knowledge at all but something else” (Wills 2018, 18).

Although he deems the quantitative superiority of scientific knowledge over non-scientific knowledge “a tangential point,” and says that he will not spend time on it, Wills (2018, 18) remarks that “A German professor once told [him] that in the first half of the 20th Century there were 40,000 monographs on Franz Kafka alone!” Presumably, Wills’ point is that research output in literature exceeds that of scientific disciplines. Instead of relying on gut feelings and hearsay, Wills should have done the required research in order to determine whether scholarly output in literature really does exceed the research output of scientific disciplines.

If we look at the Scopus database, using the data and visualization tools provided by Scimago Journal & Country Rank, we can see that research output in a natural science like physics and a social science like psychology far exceeds research output in humanistic disciplines like literature and philosophy. On average, psychology has produced 15,000 more publications per year than either literature or philosophy between the years 1999 and 2017. Likewise, on average, physics has produced 54,000 more publications per year than either literature or philosophy between the years 1999 and 2017 (Figure 1). 

Figure 1. Research output in Literature, Philosophy, Physics, and Psychology from 1999 to 2017 (Source: Scimago Journal & Country Rank)

Contrary to what Wills seems to think or what his unnamed German professor may have told him, then, it is not the case that literary scholars produce more work on Shakespeare or Kafka alone than physicists or psychologists produce. The data from the Scopus database show that, on average, it takes literature and philosophy almost two decades to produce what psychology produces in two years or what physics produces in a single year (Mizrahi 2017a, 357-359).

In fact, using JSTOR Data for Research, we can check Wills’ number, as reported to him by an unnamed German professor, to find out that there are 13,666 publications (i.e., journal articles, books, reports, and pamphlets) on Franz Kafka from 1859 to 2018 in the JSTOR database. Clearly, that is not even close to “40,000 monographs on Franz Kafka alone” in the first half of the 20th Century (Wills 2018, 18). By comparison, as of May 22, 2018, the JSTOR database contains more publications on the Standard Model in physics and the theory of conditioning in behavioral psychology than on Franz Kafka or William Shakespeare (Table 1).

Table 1. Search results for ‘Standard Model’, ‘Conditioning’, ‘William Shakespeare’, and ‘Franz Kafka’ in the JSTOR database as a percentage of the total number of publications, n = 12,633,298 (Source: JSTOR Data for Research)

  Number of Publications Percentage of JSTOR corpus
Standard Model 971,968 7.69%
Conditioning 121,219 0.95%
William Shakespeare 93,700 0.74%
Franz Kafka 13,667 0.1%

Similar results can be obtained from Google Books Ngram Viewer when we compare published work on Shakespeare, which Wills thinks exceeds all published work in other disciplines, for he says that “Shakespeare scholars have all of us beat” (Wills 2018, 18), with published work on a contemporary of Shakespeare (1564-1616) from another field of study, namely, Galileo (1564-1642). As we can see from Figure 2, from 1700 to 2000, ‘Galileo’ consistently appears in more books than ‘William Shakespeare’ does.

Figure 2. Google Books results for ‘William Shakespeare’ and ‘Galileo’ from 1700 to 2000 (Source: Google Books Ngram Viewer)

Racking Up the Fallacies

Wills continues to argue fallaciously when he resorts to what appears to be a fallacious ad hominem attack against me. He asks (rhetorically?), “Is Mr. Mizrahi producing an argument or a mere rationalization of his privilege?” (Wills 2018, 19) It is not clear to me what sort of “privilege” Wills wants to claim that I have, or why he accuses me of colonialism and sexism, since he provides no arguments for these outrageous charges. Moreover, I do not see how this is at all relevant to Weak Scientism. Even if I am somehow “privileged” (whatever Wills means by that), Weak Scientism is either true or false regardless.

After all, I take it that Wills would not doubt his physician’s diagnoses just because he or she is “privileged” for working at a hospital. Whether his physician is “privileged” for working at a hospital has nothing to do with the accuracy of his or her diagnoses. For these reasons, Wills’ ad hominem is fallacious (as opposed to a legitimate ad hominem as a rebuttal to an argument from authority, see Mizrahi 2010). I think that SERRC readers will be better served if we focus on the ideas under discussion, specifically, Weak Scientism, not the people who discuss them.

Speaking of privilege and sexism, however, it might be worth noting that, throughout his paper, Wills refers to me as ‘Mr. Mizrahi’ (rather than ‘Dr. Mizrahi’ or simply ‘Mizrahi’, as is the norm in academic publications), and that he has misspelled my name on more than one occasion (Wills 2018, 18, 22, 24). Studies suggest that addressing female doctors with ‘Ms.’ or ‘Mrs.’ rather than ‘Dr.’ might reveal gender bias (see, e.g., Files et al. 2017). Perhaps forms of address reveal not only gender bias but also ethnic or racial bias when people with non-white or “foreign” names are addressed as Mr. (or Ms.) rather than Dr. (Erlenbusch 2018).

Aside from unsubstantiated claims about the amount of research produced by literary scholars, fallacious appeals to the alleged authority of unnamed German professors, and fallacious ad hominem attacks, does Wills offer any good arguments against Weak Scientism? He spends most of his paper (pages 19-22) trying to show that there is knowledge other than scientific knowledge, such as knowledge produced in the fields of “Law and Music Theory” (Wills 2018, 20). This, however, does nothing at all to undermine Weak Scientism. For, as mentioned above, Weak Scientism is the view that scientific knowledge is superior to non-scientific knowledge, which means that there is non-scientific knowledge; it’s just not as good as scientific knowledge (Mizrahi 2017a, 356).

The Core of His Concept

Wills finally gets to Weak Scientism on the penultimate page of his paper. His main objection against Weak Scientism seems to be that it is not clear to him how scientific knowledge is supposed to be better than non-scientific knowledge. For instance, he asks, “Better in what context? By what standard of value?” (Wills 2018, 23) Earlier he also says that he is not sure what are the “certain relevant respect” in which scientific knowledge is superior to non-scientific knowledge (Wills 2018, 18).

Unfortunately, this shows that Wills either has not read the other papers in my exchange with Brown or at least has not read them carefully. For, starting with my first defense of Weak Scientism (2017a), I explain in great detail the ways in which scientific knowledge is better than non-scientific knowledge. Briefly, scientific knowledge is quantitatively better than non-scientific knowledge in terms of research output (i.e., more publications) and research impact (i.e., more citations). Scientific knowledge is qualitatively better than non-scientific knowledge in terms of explanatory, instrumental, and predictive success (Mizrahi 2017a, 364; Mizrahi 2017b, 11).

Wills tries to challenge the claim that scientific knowledge is quantitatively better than non-scientific knowledge by exclaiming, “Does science produce more knowledge that [sic] anything else? Hardly” (Wills 2018, 23). He appeals to Augustine’s idea that one “can produce a potential infinity of knowledge simply by reflecting recursively on the fact of [one’s] own existence” (Wills 2018, 23). In response, I would like to borrow a phrase from Brown (2018, 30): “good luck getting that published!”

Seriously, though, the point is that Weak Scientism is a thesis about academic knowledge or research. In terms of research output, scientific disciplines outperform non-scientific disciplines (see Figure 1 and Table 1 above; Mizrahi 2017a, 357-359; Mizrahi 2018a, 20-21). Besides, just as “recursive processes can extend our knowledge indefinitely in the field of mathematics,” they can also extend our knowledge in other fields as well, including scientific fields. That is, one “can produce a potential infinity of knowledge simply by reflecting recursively on the” (Wills 2018, 23) Standard Model in physics or any other scientific theory and/or finding. For this reason, Wills’ objection does nothing at all to undermine Weak Scientism.

Wills (2018, 23) tries to problematize the notions of explanatory, instrumental, and predictive success in an attempt to undermine the claim that scientific knowledge is qualitatively better than non-scientific knowledge in terms of explanatory, instrumental, and predictive success. But it seems that he misunderstands these notions as they apply to the scientism debate.

As far as instrumental success is concerned, Wills (2018, 23) asks, “Does science have (taken in bulk) more instrumental success than other knowledge forms? How would you even count given that craft knowledge has roughly 3 million-year head start?” Even if it is true that “craft knowledge has roughly 3 million-year head start,” it is irrelevant to whether Weak Scientism is true or false. This is because Weak Scientism is a thesis about academic knowledge or research produced by academic fields of study (Mizrahi 2017a, 356; Mizrahi 2017b, 11; Mizrahi 2018a, 12).

Solving the Problem and Explaining the Issue

As far as explanatory success is concerned, Wills (2018, 23) writes, “Is science more successful at explanation? Hardly, if science could solve problems in literature or history then these fields would not even exist.” There are a couple of problems with this objection. First, explaining and problem solving are not the same thing (Mizrahi and Buckwalter 2014). Second, what makes scientific explanations good explanations are the good-making properties that are supposed to make all explanations (both scientific and non-scientific) good explanations, namely, unification, coherence, simplicity, and testability (Mizrahi 2017a, 360-362; Mizrahi 2017b, 19-20; Mizrahi 2018a, 17).

I have already made this point several times in my replies to Brown, which Wills does not cite, namely, that Inference to the Best Explanation (IBE) is used in both scientific and non-scientific contexts (Mizrahi 2017a, 362). That is, “IBE is everywhere” (Mizrahi 2017b, 20). It’s just that scientific IBEs are better than non-scientific IBEs because they exhibit more of (and to a greater extent) the aforementioned properties that make any explanation a good explanation (Mizrahi 2018b).

As far as predictive success is concerned, Wills (2018, 23) asks, “Does science make more true predictions? Again how would you even count given that for millions of years, human beings survived by making hundreds of true predictions daily?” There are a few problems with this objection as well. First, even if it is true that “for millions of years, human beings survived by making hundreds of true predictions daily,” it is irrelevant to whether Weak Scientism is true or false, since Weak Scientism is a thesis about academic knowledge or research produced by academic fields of study (Mizrahi 2017a, 356; Mizrahi 2017b, 11; Mizrahi 2018a, 12).

Second, contrary to what Wills (2018, 24) seems to think, testing predictions in science is not simply a matter of making assertions and then checking to see if they are true. For one thing, a prediction is not simply an assertion, but rather a consequence that follows from a hypothesis plus auxiliary hypotheses (Mizrahi 2015). For another, a prediction needs to be novel such that we would not expect it to be the case except from the vantage point of the theory that we are testing (Mizrahi 2012).

As I have advised Brown (Mizrahi 2018, 17), I would also advise Wills to consult logic and reasoning textbooks, not because they provide support for the claim that “science is instrumentally successful, explanatory and makes true predictions,” as Wills (2018, 23) erroneously thinks, but because they discuss hypothesis testing in science. For Wills’ (2018, 24) remark about Joyce scholars suggests a failure to understand how hypotheses are tested in science.

Third, like Brown (2017, 49), Wills (2018, 23) admits that, just like science, philosophy is in the explanation business. For Wills (2018, 23) says that, “certainty, instrumental success, utilitarian value, predictive power and explanation all exist elsewhere in ways that are often not directly commensurable with the way they exist in science” (emphasis added). But if distinct fields of study have the same aim (i.e., to explain), then their products (i.e., explanations) can be evaluated with respect to similar criteria, such as unification, coherence, simplicity, and testability (Mizrahi 2017a, 360-362; Mizrahi 2017b, 19-20; Mizrahi 2018a, 17).

In other words, there is no incommensurability here, as Wills seems to think, insofar as both science and philosophy produce explanations and those explanations must exhibit the same good-making properties that make all explanations good explanations (Mizrahi 2018a, 17; 2018b).

“You Passed the Test!”

If Wills (2018, 24) wants to suggest that philosophers should be “testing their assertions in the ways peculiar to their disciplines,” then I would agree. However, “testing” does not simply mean making assertions and then checking to see if they are true, as Wills seems to think. After all, how would one check to see if assertions about theoretical entities are true? To test a hypothesis properly, one must derive a consequence from it (plus auxiliary assumptions) that would be observed only if the hypothesis (plus the auxiliary assumptions) is true.

Observations and/or experimentation would then indicate to one whether the consequence obtains or not (Mizrahi 2012). Of course, some philosophers have been doing just that for some time now (Knobe 2017). For instance, some experimental philosophers test hypotheses about the alleged intuitiveness of philosophical ideas and responses to thought experiments (see, e.g., Kissinger-Knox et al. 2018). I welcome such empirical work in philosophy.

Contrary to what Wills (2018, 19) seems to think, then, my aim is not to antagonize philosophers. Rather, my aim is to reform philosophy. In particular, as I have suggested in my recent reply to Brown (Mizrahi 2018a, 22), I think that philosophy would benefit from adopting not only the experimental methods of the cognitive and social sciences, as experimental philosophers have done, but also the methods of data science, such as data mining and corpus analysis (see, e.g., Ashton and Mizrahi 2018a and 2018b).

Indeed, the XPhi Replicability Project recently published a report on replication studies of 40 experimental studies according to which experimental studies “successfully replicated about 70% of the time” (Cova et al. 2018). With such a success rate, one could argue that the empirical revolution in philosophy is well under way (see also Knobe 2015). Resistance is futile!

Contact details: mmizrahi@fit.edu

References

Ashton, Z., and Mizrahi, M. “Intuition Talk is Not Methodologically Cheap: Empirically Testing the ‘Received Wisdom’ About Armchair Philosophy.” Erkenntnis 83, no. 3 (2018a): 595-612.

Ashton, Z., and Mizrahi, M. “Show Me the Argument: Empirically Testing the Armchair Philosophy Picture.” Metaphilosophy 49, no. 1-2 (2018b): 58-70.

Brown, C. M. “Some Objections to Moti Mizrahi’s ‘What’s So Bad About Scientism?’.” Social Epistemology Review and Reply Collective 6, no. 8 (2017): 42-54.

Brown, C. M. “Defending Some Objections to Moti Mizrahi’s Arguments for Weak Scientism.” Social Epistemology Review and Reply Collective 7, no. 2 (2018): 1-35.

Cova, Florian, Brent Strickland, Angela G Abatista, Aurélien Allard, James Andow, Mario Attie, James Beebe, et al. “Estimating the Reproducibility of Experimental Philosophy.” PsyArXiv, April 21, 2018. doi:10.17605/OSF.IO/SXDAH.

Erlenbusch, V. “Being a Foreigner in Philosophy: A Taxonomy.” Hypatia 33, no. 2 (2018): 307-324.

Files, J. A., Mayer, A. P., Ko, M. G., Friedrich, P., Jenkins, M., Bryan, M. J., Vegunta, S., Wittich, C. M., Lyle, M. A., Melikian, R., Duston, T., Chang, Y. H., Hayes, S. M. “Speaker Introductions at Internal Medicine Grand Rounds: Forms of Address Reveal Gender Bias.” Journal of Women’s Health 26, no. 5 (2017): 413-419.

Google. “Ngram Viewer.” Google Books Ngram Viewer. Accessed on May 21, 2018. https://books.google.com/ngrams.

JSTOR. “Create a Dataset.” JSTOR Data for Research. Accessed on May 22, 2018. https://www.jstor.org/dfr/.

Kissinger-Knox, A., Aragon, P., and Mizrahi, M. “Does Non-Moral Ignorance Exculpate? Situational Awareness and Attributions of Blame and Forgiveness.” Acta Analytica 33, no. 2 (2018): 161-179.

Knobe, J. “Experimental Philosophy.” Philosophy Compass 2, no. 1 (2007): 81-92.

Knobe, J. “Philosophers are Doing Something Different Now: Quantitative Data.” Cognition 135 (2015): 36-38.

Mizrahi, M. “Take My Advice–I Am Not Following It: Ad Hominem Arguments as Legitimate Rebuttals to Appeals to Authority.” Informal Logic 30, no. 4 (2010): 435-456.

Mizrahi, M. “Why the Ultimate Argument for Scientific Realism Ultimately Fails.” Studies in History and Philosophy of Science Part A 43, no. 1 (2012): 132-138.

Mizrahi, M. “Don’t Believe the Hype: Why Should Philosophical Theories Yield to Intuitions?” Teorema: International Journal of Philosophy 34, no. 3 (2015): 141-158.

Mizrahi, M. “What’s So Bad about Scientism?” Social Epistemology 31, no. 4 (2017a): 351-367.

Mizrahi, M. “In Defense of Weak Scientism: A Reply to Brown.” Social Epistemology Review and Reply Collective 6, no. 11 (2017b): 9-22.

Mizrahi, M. “More in Defense of Weak Scientism: Another Reply to Brown.” Social Epistemology Review and Reply Collective 7, no. 4 (2018a): 7-25.

Mizrahi, M. “The ‘Positive Argument’ for Constructive Empiricism and Inference to the Best Explanation.” Journal for General Philosophy of Science (2018b): https://doi.org/10.1007/s10838-018-9414-3.

Mizrahi, M. and Buckwalter, W. “The Role of Justification in the Ordinary Concept of Scientific Progress.” Journal for General Philosophy of Science 45, no. 1 (2014): 151-166.

Scimago Journal & Country Rank. “Subject Bubble Chart.” SJR: Scimago Journal & Country Rank. Accessed on May 20, 2018. http://www.scimagojr.com/mapgen.php?maptype=bc&country=US&y=citd.

Wills, B. “Why Mizrahi Needs to Replace Weak Scientism With an Even Weaker Scientism.” Social Epistemology Review and Reply Collective 7, no. 5 (2018): 18-24.

Author Information: Francisco Collazo-Reyes, Centro de Investigación y de Estudios Avanzados del IPN,  fcollazo@fis.cinvestav.mx
Hugo García Compeán, Centro de Investigación y de Estudios Avanzados del IPN
Miguel Ángel Pérez-Angón, Centro de Investigación y de Estudios Avanzados del IPN
Jane Margaret-Russell, Universidad Nacional Autónoma de México

Collazo Reyes, Francisco; Hugo García Compeán, Miguel Ángel Pérez-Angón, Jane Margaret-Russell,. “The Nature of the Eponym.” Social Epistemology Review and Reply Collective 7, no. 6 (2018): 12-15.

The pdf of the article gives specific page references. Shortlink: https://wp.me/p1Bfg0-3XZ

See also:

Image by Mark Hogan via Flickr / Creative Commons

 

We agree in general with the comments made by G. Vélez-Cuartas (2018), on our paper published recently in Social Epistemology (Collazo-Reyes, et al, 2018). He accepts the use of our methodology in the analysis of the eponym of Jerzy Plebanski and at the same time, suggests applying this methodology to search for the formation of invisible colleges or scientific networks associated with the emergence of epistemic communities.

This was not a direct goal of our work but we included some related aspects in the revised version of our manuscript that may seem somewhat distant from the ambit of the eponym: namely, intertextuality, obliteration by incorporation, scientometrics networks, invisible colleges, epistemic communities, Jerzy Plebanski and “plebanski”. All these topics are keywords to access our paper in the indexes of scientific literature. These aspects distinguish our methodology from other approaches used in almost a thousand papers that addressed the issue of eponyms, according to a recent search for this topic in Web of Science database.

Within this framework, we appreciate the author’s suggestion to extend our analysis to other subject areas since “eponym as a scientometric tool sounds good as a promising methodology”. In particular, “to induce an analysis on other areas of sociology of science and social epistemology” in order “to reach a symbolic status in a semantic community that is organized in a network of meaning” and could show “a geographical penetration of scientific institutions and global dynamics of scientific systems” (Vélez-Cuartas, 2018).

Traditionally, published work on eponymy has studied the contribution or influence of certain authors in their respective scientific disciplines through biographies, tributes, eulogies or life histories and narratives. Some of these have been published as a series of studies like “Marathon of eponyms” (Scully et al., 2012) or “The man behind the eponym” (Steffen, 2004). The post-structuralism movement mentioned in our paper (Collazo-Reyes, et al, 2018) has criticized this approach.

In scientific texts, the use of the term “plebanski”, as an eponym of the proper name of Jerzy Plebanski, corroborates the recognition given by various authors to the work developed by the Polish scientist. Acknowledgement is apparent in cognitive texts on different aspects of plebanski’s contributions and in this context; the “plebanski” term is cited as a cognitive entity macro-referenced in the framework of scientific communication (Pang, 2010).

We would like to mention two points related to future applications of our findings on the use of eponym in the Latin American scientific literature:

1) The process involved in the construction of an eponym inherently generates a macro-referential scheme that is not considered in the cognitive structure of the databases of the bibliographical indices. The operational strength of the intertextuality associated with the referential process helps to generate socio-cognitive relations and space-time flows of scientific information.

This scheme requires characterization through a relatively exhaustive search in the different variants of the bibliographical indices: references, abstracts, citations, key words, views, twitters, blogs, Facebook, etc. (WoS, Scopus, arXiv, INSPIRE, ADS/NASA, Google citation, altmetric platforms). Most of these have arisen within the domain of the traditional bibliographical databases. Therefore, there is a clear possibility to generate an eponym index to characterize the intertextual structures not associated with the known bibliographical indices.

2) We coincide with the author on the need to take a new approach to carrying out an exhaustive search of eponyms as related to the Latin American scientific community. We are interested in characterizing the geography of collaboration at different levels: local, national, regional, and international (Livingstone, 2003; Naylor, 2005). This approach has been followed in the study of the geographical origin of eponyms in relation to the dominant system of scientific communication (Shapin, 1998; Livingstone, 1995, 2003; Geographies of Science, 2010).

We made a first attempt in this direction in our study of the “plebanski” eponym in the area of mathematical physics. In this paper, we made use of the methodology involved in “geographies of science” (Livingstone, 2010; Geographies of Science, 2010; Knowledge and Space, 2016) with theoretical tools that enhance the projections made in the framework of the sociology of science, bibliometrics and science communication.

In particular, the “spatial turn” movement (Finnegan, 2008; Gunn, 2001; Frenken, 2009; Fa-ti, 2012) offers a new dimension in the development of information systems, maps and networks using an innovative methodology such as “spatial scientometrics” (Frenken et al., 2009; Flores-Vargas, et al, 2018).

The new proposal considers, in each application of an eponym, the original source of authors, institutions, journals and subject matters. Each source includes the position in the geographical distribution of scientific knowledge associated with a given discipline. This information is then referred to as “geo-reference” and the eponyms as “macro-georeferenced” entities.

In this scheme, the generation of eponyms involves the combination of the different sources for authors, institutions, journals and subject areas. The resulting network may develop new aspects of the distribution mechanism of the asymmetrical power associated with the geographies of knowledge (Geographies of Knowledge and Power, 2010).

Contact details: fcollazo@fis.cinvestav.mx

References

Collazo-Reyes, F., H. García-Compeán, M. A. Pérez-Angón, and J. M. Russell. 2018.  “Scientific Eponyms in Latin America: The Case of Jerzy Plebanski in the Area of Mathematical Physics.” Social Epistemology 32 (1): 63-74.

Fa-ti, F. 2012. “The global turn in the history of science.” East Asian Science, Technology and Society: An International Journal 6 (2): 249-258.

Finnegan, D. A. 2008. “The spatial turn: Geographical approaches in the history of science.” Journal of the History of Biology, 41 (2): 369-388.

Flores-Vargas, X., S. H. Vitar-Sandoval, J. I. Gutiérrez-Maya, P. Collazo-Rodríguez, and F. Collazo-Reyes. 2018. “Determinants of the emergence of modern scientific knowledge in mineralogy (Mexico, 1975-1849): a geohistoriometric approach.” Scientometrics, https://doi.org/10.1007/s11192-018-2646-5.

Frenken, K. 2009. Geography of scientific knowledge: A proximity approach. Eindhoven Centre for Innovation Studies (ECIS), working paper 10.01. http://cms.tm.tue.nl/Ecis/Files/papers/wp2010/ wp1001.pdf. Accessed 4 June 2016.

Frenken, K., S. Hardeman, and J. Hoekman. 2009. “Spatial scientometrics: Toward a cumulative research program.” Journal of Informetrics 3 (3): 222–232.

Geographies of Science. 2010. Peter Meusburger, David N. Livingstone, Heike Jöns, Editors. London, New York; Springer Dordrecht Heidelberg, ISBN 978-90-481-8610-5 DOI 10.1007/978-90-481-8611-2.

Geographies of Knowledge and Power. 2010. Peter Meusburger, David N. Livingstone, Heike Jöns, Editors. London, New York; Springer Dordrecht Heidelberg. 347 p.  DOI 10.1007/978-90-481-8611-2.

Gunn, S. 2001. “The spatial turn: Changing history of space and place”. In: S. Gunn & R. J. Morris (Eds.), Identities in space: On tested terrains in the Western city science 1850. Aldershot: Asghate.

Knowledge and space. 2016. Peter Meusburger, David N. Livingstone, Heike Jöns, Editors. London, New York; Springer Dordrecht Heidelberg, ISBN 978-90-481-8610-5 DOI 10.1007/978-90-481-8611-2.

Livingstone, D. N. 2003. “Putting Science in Its Place: Geographies of Scientific Knowledge.” Chicago.

Livingstone, D. N. 1995. “The spaces of knowledge: Contributions towards a historical.” Geography of Science 13 (1): 5–34.

Livingstone, D. N. (2010). “Landscapes of Knowledge” In: Geographies of Science, edited by Peter Meusburger, David N. Livingstone, Heike Jöns, Editors. London, New York; Springer Dordrecht Heidelberg,

Naylor, S. 2005. “Introduction: Historical geographies of science—Places, contexts, cartographies.” British Journal for the History of Science, 38: 1–12.

Pang, Kam-yiu S. 2010. “Eponymy and life-narratives: The effect of foregrounding on proper names.” Journal of Pragmatics 42 (5): 1321-1349.

Scully, C., J. Langdon, and J. Evans. 2012. “Marathon of eponyms: 26 Zinsser-Engman-Cole syndrome (Dyskeratosis congenita).” Oral Diseases 18 (5): 522-523.

Shapin, S. 1998. “Placing the view from nowhere: Historical and sociological problems in the location of science.” Transactions of the Institute of British Geographers, New Series 23: 5–12.

Steffen, C. 2004. “The man behind the eponym – Lauren v. Ackerman and verrucous carcinoma of Ackerman.” American Journal of Dermatopathology 26 (4): 334-341. /10.1007/s11192-018-2646-5.

Veles-Cuartas, G. 2018. “Invisible Colleges 2.0: Eponymy as a Scientometric Tool.” Social Epistemology Review and Reply Collective 7 (3) 5-8.